IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45127-z.html
   My bibliography  Save this article

Grid-like entorhinal representation of an abstract value space during prospective decision making

Author

Listed:
  • Alexander Nitsch

    (Max Planck Institute for Human Cognitive and Brain Sciences)

  • Mona M. Garvert

    (Max Planck Institute for Human Cognitive and Brain Sciences
    Max Planck Institute for Human Development
    Max Planck UCL Centre for Computational Psychiatry and Aging Research
    Julius-Maximilians-Universität Würzburg)

  • Jacob L. S. Bellmund

    (Max Planck Institute for Human Cognitive and Brain Sciences)

  • Nicolas W. Schuck

    (Max Planck Institute for Human Development
    Max Planck UCL Centre for Computational Psychiatry and Aging Research
    Universität Hamburg)

  • Christian F. Doeller

    (Max Planck Institute for Human Cognitive and Brain Sciences
    Norwegian University of Science and Technology
    Leipzig University
    Technical University Dresden)

Abstract

How valuable a choice option is often changes over time, making the prediction of value changes an important challenge for decision making. Prior studies identified a cognitive map in the hippocampal-entorhinal system that encodes relationships between states and enables prediction of future states, but does not inherently convey value during prospective decision making. In this fMRI study, participants predicted changing values of choice options in a sequence, forming a trajectory through an abstract two-dimensional value space. During this task, the entorhinal cortex exhibited a grid-like representation with an orientation aligned to the axis through the value space most informative for choices. A network of brain regions, including ventromedial prefrontal cortex, tracked the prospective value difference between options. These findings suggest that the entorhinal grid system supports the prediction of future values by representing a cognitive map, which might be used to generate lower-dimensional value signals to guide prospective decision making.

Suggested Citation

  • Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45127-z
    DOI: 10.1038/s41467-024-45127-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45127-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45127-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Bongioanni & Davide Folloni & Lennart Verhagen & Jérôme Sallet & Miriam C. Klein-Flügge & Matthew F. S. Rushworth, 2021. "Activation and disruption of a neural mechanism for novel choice in monkeys," Nature, Nature, vol. 591(7849), pages 270-274, March.
    2. Marco K. Wittmann & Nils Kolling & Rei Akaishi & Bolton K. H. Chau & Joshua W. Brown & Natalie Nelissen & Matthew F. S. Rushworth, 2016. "Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    3. Christian F. Doeller & Caswell Barry & Neil Burgess, 2010. "Evidence for grid cells in a human memory network," Nature, Nature, vol. 463(7281), pages 657-661, February.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Brad E. Pfeiffer & David J. Foster, 2013. "Hippocampal place-cell sequences depict future paths to remembered goals," Nature, Nature, vol. 497(7447), pages 74-79, May.
    7. Tor Stensola & Hanne Stensola & May-Britt Moser & Edvard I. Moser, 2015. "Shearing-induced asymmetry in entorhinal grid cells," Nature, Nature, vol. 518(7538), pages 207-212, February.
    8. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    9. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Camillo Padoa-Schioppa & John A. Assad, 2006. "Neurons in the orbitofrontal cortex encode economic value," Nature, Nature, vol. 441(7090), pages 223-226, May.
    11. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    4. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Nick Netzer, 2009. "Evolution of Time Preferences and Attitudes toward Risk," American Economic Review, American Economic Association, vol. 99(3), pages 937-955, June.
    6. Toon Van de Maele & Bart Dhoedt & Tim Verbelen & Giovanni Pezzulo, 2024. "A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Jan Grohn & Nima Khalighinejad & Caroline I Jahn & Alessandro Bongioanni & Urs Schüffelgen & Jerome Sallet & Matthew F. S. Rushworth & Nils Kolling, 2024. "General mechanisms of task engagement in the primate frontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Johnson Ying & Alexandra T. Keinath & Raphael Lavoie & Erika Vigneault & Salah El Mestikawy & Mark P. Brandon, 2022. "Disruption of the grid cell network in a mouse model of early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    10. Qi Huang & Zhibing Xiao & Qianqian Yu & Yuejia Luo & Jiahua Xu & Yukun Qu & Raymond Dolan & Timothy Behrens & Yunzhe Liu, 2024. "Replay-triggered brain-wide activation in humans," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    12. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Simon N Weber & Henning Sprekeler, 2019. "A local measure of symmetry and orientation for individual spikes of grid cells," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-21, February.
    14. Wei-Hsiang Lin & Justin L Gardner & Shih-Wei Wu, 2020. "Context effects on probability estimation," PLOS Biology, Public Library of Science, vol. 18(3), pages 1-45, March.
    15. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Simone Ferrari-Toniolo & Leo Chi U. Seak & Wolfram Schultz, 2022. "Risky choice: Probability weighting explains independence axiom violations in monkeys," Journal of Risk and Uncertainty, Springer, vol. 65(3), pages 319-351, December.
    17. Leo Chi U Seak & Simone Ferrari-Toniolo & Ritesh Jain & Kirby Nielsen & Wolfram Schultz, 2023. "Systematic comparison of risky choices in humans and monkeys," Working Papers 202316, University of Liverpool, Department of Economics.
    18. Lajos Vágó & Balázs B Ujfalussy, 2018. "Robust and efficient coding with grid cells," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-28, January.
    19. Simone Viganò & Rena Bayramova & Christian F. Doeller & Roberto Bottini, 2023. "Mental search of concepts is supported by egocentric vector representations and restructured grid maps," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45127-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.