IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v469y2011i7330d10.1038_nature09633.html
   My bibliography  Save this article

Preplay of future place cell sequences by hippocampal cellular assemblies

Author

Listed:
  • George Dragoi

    (The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology)

  • Susumu Tonegawa

    (The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology)

Abstract

A sense of the next place Place cells in the hippocampus track an animal's position in its environment. Previous work contends that sequential place-cell maps are produced during the first visit to a new area, and later consolidated at rest or during sleep. George Dragoi and Susumu Tonegawa report that place-cell firing patterns occur during rest or sleep before a novel spatial experience. They call this 'preplay', and because these sequences are distinct from the replay of previous experience, they suggest that it serves to prepare cell assemblies for any novel encoding that may occur in the near future.

Suggested Citation

  • George Dragoi & Susumu Tonegawa, 2011. "Preplay of future place cell sequences by hippocampal cellular assemblies," Nature, Nature, vol. 469(7330), pages 397-401, January.
  • Handle: RePEc:nat:nature:v:469:y:2011:i:7330:d:10.1038_nature09633
    DOI: 10.1038/nature09633
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09633
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usman Farooq & George Dragoi, 2024. "Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Alex P. Vaz & John H. Wittig & Sara K. Inati & Kareem A. Zaghloul, 2023. "Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Ruy Gómez-Ocádiz & Massimiliano Trippa & Chun-Lei Zhang & Lorenzo Posani & Simona Cocco & Rémi Monasson & Christoph Schmidt-Hieber, 2022. "A synaptic signal for novelty processing in the hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Hiroyuki Miyawaki & Kenji Mizuseki, 2022. "De novo inter-regional coactivations of preconfigured local ensembles support memory," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    7. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    8. Georgy Antonov & Christopher Gagne & Eran Eldar & Peter Dayan, 2022. "Optimism and pessimism in optimised replay," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-32, January.
    9. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:469:y:2011:i:7330:d:10.1038_nature09633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.