IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1003608.html
   My bibliography  Save this article

Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor

Author

Listed:
  • Gustavo de los Campos
  • Ana I Vazquez
  • Rohan Fernando
  • Yann C Klimentidis
  • Daniel Sorensen

Abstract

Despite important advances from Genome Wide Association Studies (GWAS), for most complex human traits and diseases, a sizable proportion of genetic variance remains unexplained and prediction accuracy (PA) is usually low. Evidence suggests that PA can be improved using Whole-Genome Regression (WGR) models where phenotypes are regressed on hundreds of thousands of variants simultaneously. The Genomic Best Linear Unbiased Prediction (G-BLUP, a ridge-regression type method) is a commonly used WGR method and has shown good predictive performance when applied to plant and animal breeding populations. However, breeding and human populations differ greatly in a number of factors that can affect the predictive performance of G-BLUP. Using theory, simulations, and real data analysis, we study the performance of G-BLUP when applied to data from related and unrelated human subjects. Under perfect linkage disequilibrium (LD) between markers and QTL, the prediction R-squared (R2) of G-BLUP reaches trait-heritability, asymptotically. However, under imperfect LD between markers and QTL, prediction R2 based on G-BLUP has a much lower upper bound. We show that the minimum decrease in prediction accuracy caused by imperfect LD between markers and QTL is given by (1−b)2, where b is the regression of marker-derived genomic relationships on those realized at causal loci. For pairs of related individuals, due to within-family disequilibrium, the patterns of realized genomic similarity are similar across the genome; therefore b is close to one inducing small decrease in R2. However, with distantly related individuals b reaches very low values imposing a very low upper bound on prediction R2. Our simulations suggest that for the analysis of data from unrelated individuals, the asymptotic upper bound on R2 may be of the order of 20% of the trait heritability. We show how PA can be enhanced with use of variable selection or differential shrinkage of estimates of marker effects.Author Summary: Despite great advances in genotyping technologies, the ability to predict complex traits and diseases remains limited. Increasing evidence suggests that many of these traits may be affected by a large number of small-effect genes that are difficult to detect in single-variant association studies. Whole-Genome Regression (WGR) methods can be used to confront this challenge and have exhibited good predictive power when applied to animal and plant breeding populations. WGR is receiving increased attention in the field of human genetics. However, human and breeding populations differ greatly in factors that can affect the performance of WGRs. Using theory, simulation and real data analysis, we study the predictive performance of the Genomic Best Linear Unbiased Predictor (G-BLUP), one of the most commonly used WGR methods. We derive upper bounds for the prediction accuracy of G-BLUP under perfect and imperfect LD between markers and genotypes at causal loci and validate such upper bounds using simulation and real data analysis. Imperfect LD between markers and causal loci can impose a very low upper bound on the prediction accuracy of G-BLUP, especially when data involve unrelated individuals. In this context, we propose and evaluate avenues for improving the predictive performance of G-BLUP.

Suggested Citation

  • Gustavo de los Campos & Ana I Vazquez & Rohan Fernando & Yann C Klimentidis & Daniel Sorensen, 2013. "Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor," PLOS Genetics, Public Library of Science, vol. 9(7), pages 1-15, July.
  • Handle: RePEc:plo:pgen00:1003608
    DOI: 10.1371/journal.pgen.1003608
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003608
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003608&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1003608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.