IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2765-d1473034.html
   My bibliography  Save this article

A Spatial Agent-Based Model for Studying the Effect of Human Mobility Patterns on Epidemic Outbreaks in Urban Areas

Author

Listed:
  • Alexandru Topîrceanu

    (Department of Computer and Information Technology, Politehnica University Timişoara, 300223 Timișoara, Romania)

Abstract

The epidemic outbreaks of the last two decades have led governments to rely more on computational tools for establishing protection policies. Computational approaches to modeling epidemics traditionally rely on compartmental models, network models, or agent-based models (ABMs); however, each approach has its limitations, ranging from reduced realism to lack of tractability. Furthermore, the recent literature emphasizes the importance of points of interest (POIs) as sources of population mixing and potential outbreak hotspots. In response, this study proposes a novel urban spatial ABM validated using our augmented SICARQD epidemic model. To replicate daily activities more accurately, the urban area is divided into a matrix of points of interest (POIs) with agents that have unique paths that only permit infectious transmission within POIs. Our results provide a qualitative assessment of how urban characteristics and individual mobility patterns impact the infected population during an outbreak. That is, we study how population density, the total number of POIs (where the population concentrates), the average number of POIs visited by an agent, the maximum travel distance from the home location, and the quarantine ratio impact the dynamics of an outbreak. Our ABM simulation framework offers a valuable tool for investigating and controlling infectious disease outbreaks in urban environments with direct applicability to global policy makers.

Suggested Citation

  • Alexandru Topîrceanu, 2024. "A Spatial Agent-Based Model for Studying the Effect of Human Mobility Patterns on Epidemic Outbreaks in Urban Areas," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2765-:d:1473034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Alexandre Bovet & Hernán A. Makse, 2019. "Influence of fake news in Twitter during the 2016 US presidential election," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Kristoffer Rypdal & Filippo Maria Bianchi & Martin Rypdal, 2020. "Intervention Fatigue is the Primary Cause of Strong Secondary Waves in the COVID-19 Pandemic," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    5. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    6. Fontanari, José F., 2021. "A stochastic model for the influence of social distancing on loneliness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandru Topîrceanu, 2023. "On the Impact of Quarantine Policies and Recurrence Rate in Epidemic Spreading Using a Spatial Agent-Based Model," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    2. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    3. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. Toxvaerd, Flavio & Rowthorn, Robert, 2022. "On the management of population immunity," Journal of Economic Theory, Elsevier, vol. 204(C).
    5. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    7. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    8. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    9. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    10. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    11. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    12. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    13. Ciprian-Octavian Truică & Elena-Simona Apostol, 2022. "MisRoBÆRTa: Transformers versus Misinformation," Mathematics, MDPI, vol. 10(4), pages 1-25, February.
    14. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    15. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    16. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    17. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    18. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    19. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    20. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2765-:d:1473034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.