IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics096007792100713x.html
   My bibliography  Save this article

A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil

Author

Listed:
  • Rocha Filho, T.M.
  • Moret, M.A.
  • Chow, C.C.
  • Phillips, J.C.
  • Cordeiro, A.J.A.
  • Scorza, F.A.
  • Almeida, A.-C.G.
  • Mendes, J.F.F.

Abstract

We introduce a compartmental model SEIAHRV (Susceptible, Exposed, Infected, Asymptomatic, Hospitalized, Recovered, Vaccinated) with age structure for the spread of the SARAS-CoV virus. In order to model current different vaccines we use compartments for individuals vaccinated with one and two doses without vaccine failure and a compartment for vaccinated individual with vaccine failure. The model allows to consider any number of different vaccines with different efficacies and delays between doses. Contacts among age groups are modeled by a contact matrix and the contagion matrix is obtained from a probability of contagion pc per contact. The model uses known epidemiological parameters and the time dependent probability pc is obtained by fitting the model output to the series of deaths in each locality, and reflects non-pharmaceutical interventions. As a benchmark the output of the model is compared to two good quality serological surveys, and applied to study the evolution of the COVID-19 pandemic in the main Brazilian cities with a total population of more than one million. We also discuss with some detail the case of the city of Manaus which raised special attention due to a previous report of We also estimate the attack rate, the total proportion of cases (symptomatic and asymptomatic) with respect to the total population, for all Brazilian states since the beginning of the COVID-19 pandemic. We argue that the model present here is relevant to assessing present policies not only in Brazil but also in any place where good serological surveys are not available.

Suggested Citation

  • Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100713x
    DOI: 10.1016/j.chaos.2021.111359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100713X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    2. Ewen Callaway, 2021. "Delta coronavirus variant: scientists brace for impact," Nature, Nature, vol. 595(7865), pages 17-18, July.
    3. Lyndon P. James & Joshua A. Salomon & Caroline O. Buckee & Nicolas A. Menzies, 2021. "The Use and Misuse of Mathematical Modeling for Infectious Disease Policymaking: Lessons for the COVID-19 Pandemic," Medical Decision Making, , vol. 41(4), pages 379-385, May.
    4. Fabian Lorig & Emil Johansson & Paul Davidsson, 2021. "Agent-Based Social Simulation of the Covid-19 Pandemic: A Systematic Review," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(3), pages 1-5.
    5. Fuchang Gao & Lixing Han, 2012. "Implementing the Nelder-Mead simplex algorithm with adaptive parameters," Computational Optimization and Applications, Springer, vol. 51(1), pages 259-277, January.
    6. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocha Filho, T.M. & Mendes, J.F.F. & Lucio, M.L. & Moret, M.A., 2023. "COVID-19 data, mitigation policies and Newcomb–Benford law," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    2. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    3. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    4. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    5. Rhodes, Christopher A. & House, Thomas, 2013. "The rate of convergence to early asymptotic behaviour in age-structured epidemic models," Theoretical Population Biology, Elsevier, vol. 85(C), pages 58-62.
    6. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    7. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. David J. Haw & Christian Morgenstern & Giovanni Forchini & Robert Johnson & Patrick Doohan & Peter C. Smith & Katharina D. Hauck, 2022. "Data needs for integrated economic-epidemiological models of pandemic mitigation policies," Papers 2209.01487, arXiv.org.
    9. Eunha Shim, 2021. "Projecting the Impact of SARS-CoV-2 Variants and the Vaccination Program on the Fourth Wave of the COVID-19 Pandemic in South Korea," IJERPH, MDPI, vol. 18(14), pages 1-11, July.
    10. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    11. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.
    12. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    13. Jing Yan & Suvajyoti Guha & Prasanna Hariharan & Matthew Myers, 2019. "Modeling the Effectiveness of Respiratory Protective Devices in Reducing Influenza Outbreak," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 647-661, March.
    14. Richard G. Wamai & Jason L. Hirsch & Wim Van Damme & David Alnwick & Robert C. Bailey & Stephen Hodgins & Uzma Alam & Mamka Anyona, 2021. "What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus?," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    15. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    16. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    17. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    18. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    20. Emanuele Amodio & Michele Battisti & Antonio Francesco Gravina & Andrea Mario Lavezzi & Giuseppe Maggio, 2023. "School‐age vaccination, school openings and Covid‐19 diffusion," Health Economics, John Wiley & Sons, Ltd., vol. 32(5), pages 1084-1100, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100713x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.