Author
Listed:
- Michael N Economo
- John A White
Abstract
Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs. Author Summary: The gamma rhythm is a prominent, 30–80-Hz EEG signal that is associated with cognition. Several classes of computational models have been posited to explain the gamma rhythm mechanistically. We study a particular class in which the gamma rhythm arises from delayed negative feedback. Our study is unique in that we calibrate the model from direct measurements. We also test the model's most critical predictions directly in experiments that take advantage of cutting-edge computer technologies able to simulate ion channels in real time. Our major findings are that a large amount of “background” synaptic input to neurons is necessary to promote the gamma rhythm; that inhibitory neurons are specially tuned to keep the gamma rhythm stable; that noise has a strong effect on network frequency; and that incoming sensory input can be represented with sensitivity that depends on the strength of excitatory-excitatory synapses and the number of neurons receiving the input. Overall, our results support the hypothesis that the gamma rhythm reflects the presence of delayed feedback that controls overall cortical activity on a cycle-by-cycle basis. Furthermore, its frequency range mainly reflects the timescale of synaptic inhibition, the degree of background activity, and noise levels in the network.
Suggested Citation
Michael N Economo & John A White, 2012.
"Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition,"
PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-20, January.
Handle:
RePEc:plo:pcbi00:1002354
DOI: 10.1371/journal.pcbi.1002354
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002354. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.