IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002982.html
   My bibliography  Save this article

Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

Author

Listed:
  • Michael A Carlin
  • Mounya Elhilali

Abstract

The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their preferred stimuli. Such a strategy can indicate the presence of ongoing sounds, is involved in parsing complex auditory scenes, and may play a role in matching neural dynamics to varying time scales in acoustic signals. In this paper, we describe a computational framework for exploring the influence of a code based on sustained firing rates on the shape of the spectro-temporal receptive field (STRF), a linear kernel that maps a spectro-temporal acoustic stimulus to the instantaneous firing rate of a central auditory neuron. We demonstrate the emergence of richly structured STRFs that capture the structure of natural sounds over a wide range of timescales, and show how the emergent ensembles resemble those commonly reported in physiological studies. Furthermore, we compare ensembles that optimize a sustained firing code with one that optimizes a sparse code, another widely considered coding strategy, and suggest how the resulting population responses are not mutually exclusive. Finally, we demonstrate how the emergent ensembles contour the high-energy spectro-temporal modulations of natural sounds, forming a discriminative representation that captures the full range of modulation statistics that characterize natural sound ensembles. These findings have direct implications for our understanding of how sensory systems encode the informative components of natural stimuli and potentially facilitate multi-sensory integration. Author Summary: We explore a fundamental question with regard to the representation of sound in the auditory system, namely: what are the coding strategies that underlie observed neurophysiological responses in central auditory areas? There has been debate in recent years as to whether neural ensembles explicitly minimize their propensity to fire (the so-called sparse coding hypothesis) or whether neurons exhibit strong, sustained firing rates when processing their preferred stimuli. Using computational modeling, we directly confront issues raised in this debate, and our results suggest that not only does a sustained firing strategy yield a sparse representation of sound, but the principle yields emergent neural ensembles that capture the rich structural variations present in natural stimuli. In particular, spectro-temporal receptive fields (STRFs) have been widely used to characterize the processing mechanisms of central auditory neurons and have revealed much about the nature of sound processing in central auditory areas. In our paper, we demonstrate how neurons that maximize a sustained firing objective yield STRFs akin to those commonly measured in physiological studies, capturing a wide range of aspects of natural sounds over a variety of timescales, suggesting that such a coding strategy underlies observed neural responses.

Suggested Citation

  • Michael A Carlin & Mounya Elhilali, 2013. "Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-18, March.
  • Handle: RePEc:plo:pcbi00:1002982
    DOI: 10.1371/journal.pcbi.1002982
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002982
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002982&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    2. Xiaoqin Wang & Thomas Lu & Ross K. Snider & Li Liang, 2005. "Sustained firing in auditory cortex evoked by preferred stimuli," Nature, Nature, vol. 435(7040), pages 341-346, May.
    3. Ana Calabrese & Joseph W Schumacher & David M Schneider & Liam Paninski & Sarah M N Woolley, 2011. "A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.
    3. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    4. Lanlan Ma & Xuhui Tai & Liye Su & Lijuan Shi & Enhua Wang & Ling Qin, 2013. "The Neuronal Responses to Repetitive Acoustic Pulses in Different Fields of the Auditory Cortex of Awake Rats," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    5. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    6. Ivar L Thorson & Jean Liénard & Stephen V David, 2015. "The Essential Complexity of Auditory Receptive Fields," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-33, December.
    7. Julie E Elie & Frédéric E Theunissen, 2019. "Invariant neural responses for sensory categories revealed by the time-varying information for communication calls," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-43, September.
    8. Yifan Gu & Yang Qi & Pulin Gong, 2019. "Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-34, April.
    9. Roohollah Massoudi & Marc M Van Wanrooij & Huib Versnel & A John Van Opstal, 2015. "Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-30, February.
    10. Cheng Ly & Brent Doiron, 2009. "Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-12, April.
    11. Gonzalo H Otazu & Christian Leibold, 2011. "A Corticothalamic Circuit Model for Sound Identification in Complex Scenes," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-15, September.
    12. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    13. Jean-Pierre Rospars & Alexandre Grémiaux & David Jarriault & Antoine Chaffiol & Christelle Monsempes & Nina Deisig & Sylvia Anton & Philippe Lucas & Dominique Martinez, 2014. "Heterogeneity and Convergence of Olfactory First-Order Neurons Account for the High Speed and Sensitivity of Second-Order Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    14. Mehrad Sarmashghi & Shantanu P Jadhav & Uri Eden, 2021. "Efficient spline regression for neural spiking data," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
    15. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    16. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.
    17. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    18. Borges, F.S. & Protachevicz, P.R. & Pena, R.F.O. & Lameu, E.L. & Higa, G.S.V. & Kihara, A.H. & Matias, F.S. & Antonopoulos, C.G. & de Pasquale, R. & Roque, A.C. & Iarosz, K.C. & Ji, P. & Batista, A.M., 2020. "Self-sustained activity of low firing rate in balanced networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    19. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.