IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51861-1.html
   My bibliography  Save this article

Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT2A)

Author

Listed:
  • Ruxandra Barzan

    (Ruhr University Bochum
    Ruhr University Bochum
    MEDICE Arzneimittel Pütter GmbH & Co. KG)

  • Beyza Bozkurt

    (Ruhr University Bochum
    Ruhr University Bochum)

  • Mohammadreza M. Nejad

    (Ruhr University Bochum)

  • Sandra T. Süß

    (Ruhr University Bochum)

  • Tatjana Surdin

    (Ruhr University Bochum)

  • Hanna Böke

    (Ruhr University Bochum)

  • Katharina Spoida

    (Ruhr University Bochum)

  • Zohre Azimi

    (Ruhr University Bochum
    Ruhr University Bochum)

  • Michelle Grömmke

    (Ruhr University Bochum)

  • Dennis Eickelbeck

    (Ruhr University Bochum)

  • Melanie D. Mark

    (Ruhr University Bochum)

  • Lennard Rohr

    (Ruhr University Bochum)

  • Ida Siveke

    (Ruhr University Bochum)

  • Sen Cheng

    (Ruhr University Bochum)

  • Stefan Herlitze

    (Ruhr University Bochum)

  • Dirk Jancke

    (Ruhr University Bochum
    Ruhr University Bochum)

Abstract

Response gain is a crucial means by which modulatory systems control the impact of sensory input. In the visual cortex, the serotonergic 5-HT2A receptor is key in such modulation. However, due to its expression across different cell types and lack of methods that allow for specific activation, the underlying network mechanisms remain unsolved. Here we optogenetically activate endogenous G protein-coupled receptor (GPCR) signaling of a single receptor subtype in distinct mouse neocortical subpopulations in vivo. We show that photoactivation of the 5-HT2A receptor pathway in pyramidal neurons enhances firing of both excitatory neurons and interneurons, whereas 5-HT2A photoactivation in parvalbumin interneurons produces bidirectional effects. Combined photoactivation in both cell types and cortical network modelling demonstrates a conductance-driven polysynaptic mechanism that controls the gain of visual input without affecting ongoing baseline levels. Our study opens avenues to explore GPCRs neuromodulation and its impact on sensory-driven activity and ongoing neuronal dynamics.

Suggested Citation

  • Ruxandra Barzan & Beyza Bozkurt & Mohammadreza M. Nejad & Sandra T. Süß & Tatjana Surdin & Hanna Böke & Katharina Spoida & Zohre Azimi & Michelle Grömmke & Dennis Eickelbeck & Melanie D. Mark & Lennar, 2024. "Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT2A)," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51861-1
    DOI: 10.1038/s41467-024-51861-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51861-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51861-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung-Hee Lee & Alex C. Kwan & Yang Dan, 2014. "Interneuron subtypes and orientation tuning," Nature, Nature, vol. 508(7494), pages 1-2, April.
    2. Lyle J. Borg-Graham & Cyril Monier & Yves Frégnac, 1998. "Visual input evokes transient and strong shunting inhibition in visual cortical neurons," Nature, Nature, vol. 393(6683), pages 369-373, May.
    3. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    4. Fangmin Zhou & Alexandra-Madelaine Tichy & Bibi Nusreen Imambocus & Shreyas Sakharwade & Francisco J. Rodriguez Jimenez & Marco González Martínez & Ishrat Jahan & Margarita Habib & Nina Wilhelmy & Van, 2023. "Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Nathan R. Wilson & Caroline A. Runyan & Forea L. Wang & Mriganka Sur, 2012. "Division and subtraction by distinct cortical inhibitory networks in vivo," Nature, Nature, vol. 488(7411), pages 343-348, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Yue Liu & Xiao-Jing Wang, 2024. "Flexible gating between subspaces in a neural network model of internally guided task switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    4. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    5. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    6. Joshua H Goldwyn & Bradley R Slabe & Joseph B Travers & David Terman, 2018. "Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-23, July.
    7. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Valentin Markounikau & Christian Igel & Amiram Grinvald & Dirk Jancke, 2010. "A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-14, September.
    9. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Landry, Peter & Webb, Ryan, 2021. "Pairwise normalization: A neuroeconomic theory of multi-attribute choice," Journal of Economic Theory, Elsevier, vol. 193(C).
    11. Bryce D. Grier & Samuel Parkins & Jarra Omar & Hey-Kyoung Lee, 2023. "Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51861-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.