IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003164.html
   My bibliography  Save this article

Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model

Author

Listed:
  • Jung H Lee
  • Miles A Whittington
  • Nancy J Kopell

Abstract

Cortical rhythms have been thought to play crucial roles in our cognitive abilities. Rhythmic activity in the beta frequency band, around 20 Hz, has been reported in recent studies that focused on neural correlates of attention, indicating that top-down beta rhythms, generated in higher cognitive areas and delivered to earlier sensory areas, can support attentional gain modulation. To elucidate functional roles of beta rhythms and underlying mechanisms, we built a computational model of sensory cortical areas. Our simulation results show that top-down beta rhythms can activate ascending synaptic projections from L5 to L4 and L2/3, responsible for biased competition in superficial layers. In the simulation, slow-inhibitory interneurons are shown to resonate to the 20 Hz input and modulate the activity in superficial layers in an attention-related manner. The predicted critical roles of these cells in attentional gain provide a potential mechanism by which cholinergic drive can support selective attention.Author Summary: Top-down signals originate from higher cognitive areas such as parietal and prefrontal cortex and propagate to earlier stages of the brain. They have been thought to be associated with selective attention, and recent physiological studies suggest that top-down signals in the beta frequency band can support selective attention. In this study, we employ a computational model to investigate potential mechanisms by which top-down beta rhythms can influence neural responses induced by presentation of stimuli. The model includes several cell types, reportedly crucial for generating cortical rhythmic activity in the gamma and beta frequency bands, and the simulation results show that top-down beta rhythms are capable of reproducing experimentally observed attentional effects on neural responses to visual stimuli. These modulatory effects of top-down beta rhythms are mainly induced via activation of ascending inhibition originating from deep layer slow inhibitory interneurons. Since the excitability of slow interneurons can be increased by cholinergic neuromodulators, these interneurons may mediate the effects of cholinergic tone on attention.

Suggested Citation

  • Jung H Lee & Miles A Whittington & Nancy J Kopell, 2013. "Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1003164
    DOI: 10.1371/journal.pcbi.1003164
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003164
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003164&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.