IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020165.html
   My bibliography  Save this article

Computational Aspects of Feedback in Neural Circuits

Author

Listed:
  • Wolfgang Maass
  • Prashant Joshi
  • Eduardo D Sontag

Abstract

It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning) to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also throw new light on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic regulatory networks.Author Summary: Circuits of neurons in the brain have an abundance of feedback connections, both on the level of local microcircuits and on the level of synaptic connections between brain areas. But the functional role of these feedback connections is largely unknown. We present a computational theory that characterizes the gain in computational power that feedback can provide in such circuits. It shows that feedback endows standard models for neural circuits with the capability to emulate arbitrary Turing machines. In fact, with suitable feedback they can simulate any dynamical system, in particular any conceivable analog computer. Under realistic noise conditions, the computational power of these circuits is necessarily reduced. But we demonstrate through computer simulations that feedback also provides a significant gain in computational power for quite detailed models of cortical microcircuits with in vivo–like high levels of noise. In particular it enables generic cortical microcircuits to carry out computations that combine information from working memory and persistent internal states in real time with new information from online input streams.

Suggested Citation

  • Wolfgang Maass & Prashant Joshi & Eduardo D Sontag, 2007. "Computational Aspects of Feedback in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(1), pages 1-20, January.
  • Handle: RePEc:plo:pcbi00:0020165
    DOI: 10.1371/journal.pcbi.0020165
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020165
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020165&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.