IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51283-z.html
   My bibliography  Save this article

The right posterior parietal cortex mediates spatial reorienting of attentional choice bias

Author

Listed:
  • Ankita Sengupta

    (Indian Institute of Science)

  • Sanjna Banerjee

    (Indian Institute of Science
    Foundation of Art and Health India)

  • Suhas Ganesh

    (Indian Institute of Science
    Verily Life Sciences)

  • Shrey Grover

    (Indian Institute of Science
    Boston University)

  • Devarajan Sridharan

    (Indian Institute of Science
    Indian Institute of Science)

Abstract

Attention facilitates behavior by enhancing perceptual sensitivity (sensory processing) and choice bias (decisional weighting) for attended information. Whether distinct neural substrates mediate these distinct components of attention remains unknown. We investigate the causal role of key nodes of the right posterior parietal cortex (rPPC) in the forebrain attention network in sensitivity versus bias control. Two groups of participants performed a cued attention task while we applied either inhibitory, repetitive transcranial magnetic stimulation (n = 28) or 40 Hz transcranial alternating current stimulation (n = 26) to the dorsal rPPC. We show that rPPC stimulation – with either modality – impairs task performance by selectively altering attentional modulation of bias but not sensitivity. Specifically, participants’ bias toward the uncued, but not the cued, location reduced significantly following rPPC stimulation – an effect that was consistent across both neurostimulation cohorts. In sum, the dorsal rPPC causally mediates the reorienting of choice bias, one particular component of visual spatial attention.

Suggested Citation

  • Ankita Sengupta & Sanjna Banerjee & Suhas Ganesh & Shrey Grover & Devarajan Sridharan, 2024. "The right posterior parietal cortex mediates spatial reorienting of attentional choice bias," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51283-z
    DOI: 10.1038/s41467-024-51283-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51283-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51283-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannah F. Iaccarino & Annabelle C. Singer & Anthony J. Martorell & Andrii Rudenko & Fan Gao & Tyler Z. Gillingham & Hansruedi Mathys & Jinsoo Seo & Oleg Kritskiy & Fatema Abdurrob & Chinnakkaruppan Ad, 2016. "Gamma frequency entrainment attenuates amyloid load and modifies microglia," Nature, Nature, vol. 540(7632), pages 230-235, December.
    2. Eun Jung Hwang & Jeffrey E. Dahlen & Madan Mukundan & Takaki Komiyama, 2017. "History-based action selection bias in posterior parietal cortex," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    3. Jessica A. Cardin & Marie Carlén & Konstantinos Meletis & Ulf Knoblich & Feng Zhang & Karl Deisseroth & Li-Huei Tsai & Christopher I. Moore, 2009. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses," Nature, Nature, vol. 459(7247), pages 663-667, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou T. Blanpain & Eric R. Cole & Emily Chen & James K. Park & Michael Y. Walelign & Robert E. Gross & Brian T. Cabaniss & Jon T. Willie & Annabelle C. Singer, 2024. "Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    5. Daniela Rodrigues-Amorim & P. Lorenzo Bozzelli & TaeHyun Kim & Liwang Liu & Oliver Gibson & Cheng-Yi Yang & Mitchell H. Murdock & Fabiola Galiana-Melendez & Brooke Schatz & Alexis Davison & Md Rezaul , 2024. "Multisensory gamma stimulation mitigates the effects of demyelination induced by cuprizone in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Amy Clements-Cortes & Lee Bartel, 2022. "Long-Term Multi-Sensory Gamma Stimulation of Dementia Patients: A Case Series Report," IJERPH, MDPI, vol. 19(23), pages 1-10, November.
    8. Koustav Roy & Xuzhao Zhou & Rintaro Otani & Ping-Chuan Yuan & Shuji Ioka & Kaspar E. Vogt & Tamae Kondo & Nouran H. T. Farag & Haruto Ijiri & Zhaofa Wu & Youhei Chitose & Mao Amezawa & David S. Uygun , 2024. "Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A2A receptors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ana Sofía Ríos & Simón Oxenford & Clemens Neudorfer & Konstantin Butenko & Ningfei Li & Nanditha Rajamani & Alexandre Boutet & Gavin J. B. Elias & Jurgen Germann & Aaron Loh & Wissam Deeb & Fuyixue Wa, 2022. "Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Kai Zhou & Wei Wei & Dan Yang & Hui Zhang & Wei Yang & Yunpeng Zhang & Yingnan Nie & Mingming Hao & Pengcheng Wang & Hang Ruan & Ting Zhang & Shouyan Wang & Yaobo Liu, 2024. "Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    11. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Samuel López-Yépez Junior & Juliane Martin & Oliver Hulme & Duda Kvitsiani, 2021. "Choice history effects in mice and humans improve reward harvesting efficiency," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-33, October.
    14. Macauley Smith Breault & Pierre Sacré & Zachary B. Fitzgerald & John T. Gale & Kathleen E. Cullen & Jorge A. González-Martínez & Sridevi V. Sarma, 2023. "Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Yang, Pengbo & Shang, Pengjian & Lin, Aijing, 2017. "Financial time series analysis based on effective phase transfer entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 398-408.
    16. Anne E. Urai & Tobias H. Donner, 2022. "Persistent activity in human parietal cortex mediates perceptual choice repetition bias," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Matthias Fritsche & Antara Majumdar & Lauren Strickland & Samuel Liebana Garcia & Rafal Bogacz & Armin Lak, 2024. "Temporal regularities shape perceptual decisions and striatal dopamine signals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Xin Fu & Eric Teboul & Grant L. Weiss & Pantelis Antonoudiou & Chandrashekhar D. Borkar & Jonathan P. Fadok & Jamie Maguire & Jeffrey G. Tasker, 2022. "Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Supratim Ray & Amy M Ni & John H R Maunsell, 2013. "Strength of Gamma Rhythm Depends on Normalization," PLOS Biology, Public Library of Science, vol. 11(2), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51283-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.