IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3000487.html
   My bibliography  Save this article

Alpha oscillations and traveling waves: Signatures of predictive coding?

Author

Listed:
  • Andrea Alamia
  • Rufin VanRullen

Abstract

Predictive coding is a key mechanism to understand the computational processes underlying brain functioning: in a hierarchical network, higher levels predict the activity of lower levels, and the unexplained residuals (i.e., prediction errors) are passed back to higher layers. Because of its recursive nature, we wondered whether predictive coding could be related to brain oscillatory dynamics. First, we show that a simple 2-level predictive coding model of visual cortex, with physiological communication delays between levels, naturally gives rise to alpha-band rhythms, similar to experimental observations. Then, we demonstrate that a multilevel version of the same model can explain the occurrence of oscillatory traveling waves across levels, both forward (during visual stimulation) and backward (during rest). Remarkably, the predictions of our model are matched by the analysis of 2 independent electroencephalography (EEG) datasets, in which we observed oscillatory traveling waves in both directions.A predictive coding model explains the spatio-temporal dynamics of alpha oscillations recorded in human brain experiments, including traveling waves whose direction of propagation depends on the cognitive state.

Suggested Citation

  • Andrea Alamia & Rufin VanRullen, 2019. "Alpha oscillations and traveling waves: Signatures of predictive coding?," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-26, October.
  • Handle: RePEc:plo:pbio00:3000487
    DOI: 10.1371/journal.pbio.3000487
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000487
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3000487&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3000487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pieter R. Roelfsema & Andreas K. Engel & Peter König & Wolf Singer, 1997. "Visuomotor integration is associated with zero time-lag synchronization among cortical areas," Nature, Nature, vol. 385(6612), pages 157-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Bin & Deng, Yun & Yu, Haitao & Guo, Xinmeng & Wang, Jiang, 2016. "Dependence of inter-neuronal effective connectivity on synchrony dynamics in neuronal network motifs," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 48-59.
    2. Christian G Fink & Victoria Booth & Michal Zochowski, 2011. "Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    3. Andreas Wilmer & Marc de Lussanet & Markus Lappe, 2012. "Time-Delayed Mutual Information of the Phase as a Measure of Functional Connectivity," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-22, September.
    4. Michael N Economo & John A White, 2012. "Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-20, January.
    5. Rajasimhan Rajagovindan & Mingzhou Ding, 2008. "Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-8, November.
    6. Takayuki Onojima & Takahiro Goto & Hiroaki Mizuhara & Toshio Aoyagi, 2018. "A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-20, January.
    7. David Hall & Levin Kuhlmann, 2013. "Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-21, August.
    8. Farrera-Megchun, Agustin & Padilla-Longoria, Pablo & Santos, Gerardo J. Escalera & Espinal-Enríquez, Jesús & Bernal-Jaquez, Roberto, 2024. "Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    9. Wu, Yong & Ding, Qianming & Huang, Weifang & Hu, Xueyan & Ye, Zhiqiu & Jia, Ya, 2024. "Dynamic modulation of external excitation enhance synchronization in complex neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    10. Mohan Raghavan & Bharadwaj Amrutur & Rishikesh Narayanan & Sujit Kumar Sikdar, 2013. "Synconset Waves and Chains: Spiking Onsets in Synchronous Populations Predict and Are Predicted by Network Structure," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-17, October.
    11. Wang, Jing & Ye, Weijie & Liu, Shenquan & Lu, Bo & Jiang, Xiaofang, 2016. "Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 32-38.
    12. Cao, Haoyu & Yang, Zhiyin & Liu, Zonghua, 2023. "Remote synchronization in multi-layered community networks with star-like topology," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Shilpa Chakravartula & Premananda Indic & Bala Sundaram & Timothy Killingback, 2017. "Emergence of local synchronization in neuronal networks with adaptive couplings," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-16, June.
    14. Erfan Zabeh & Nicholas C. Foley & Joshua Jacobs & Jacqueline P. Gottlieb, 2023. "Beta traveling waves in monkey frontal and parietal areas encode recent reward history," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Danique Jeurissen & Anne F. Ham & Amparo Gilhuis & Paolo Papale & Pieter R. Roelfsema & Matthew W. Self, 2024. "Border-ownership tuning determines the connectivity between V4 and V1 in the macaque visual system," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Ikuhiro Yamaguchi & Yutaro Ogawa & Yasuhiko Jimbo & Hiroya Nakao & Kiyoshi Kotani, 2011. "Reduction Theories Elucidate the Origins of Complex Biological Rhythms Generated by Interacting Delay-Induced Oscillations," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.