IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003590.html
   My bibliography  Save this article

Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model

Author

Listed:
  • Matteo Farinella
  • Daniel T Ruedt
  • Padraig Gleeson
  • Frederic Lanore
  • R Angus Silver

Abstract

In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.Author Summary: In the brains of awake animals, networks are active even when there is no input from the outside world. Neurons embedded within cortical networks experience this intrinsic ongoing firing as ‘background’ synaptic input. While the effect of this background input on the integration properties of neurons has been studied in the cell body region, little is known about how asynchronous background activity affects integration in distal dendrites, which contain nonlinear mechanisms that boost and dampen synaptic input. Our simulations, using a model of a cortical L5 pyramidal cell, show that the nonlinear NMDA receptor conductance activated by distributed background activity could increase the gain of the dendrite, enabling synaptic inputs to be integrated more effectively over the dendritic tree and over longer time intervals than previously thought possible. This mechanism could potentially enable the integrative properties of individual neurons to change as a function of the activity of the network in which they are embedded. Our work suggests that background network activity could play a key role routing and transforming information as it flows through the cortex.

Suggested Citation

  • Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
  • Handle: RePEc:plo:pcbi00:1003590
    DOI: 10.1371/journal.pcbi.1003590
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003590
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003590&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongbo Jia & Nathalie L. Rochefort & Xiaowei Chen & Arthur Konnerth, 2010. "Dendritic organization of sensory input to cortical neurons in vivo," Nature, Nature, vol. 464(7293), pages 1307-1312, April.
    2. Xiaowei Chen & Ulrich Leischner & Nathalie L. Rochefort & Israel Nelken & Arthur Konnerth, 2011. "Functional mapping of single spines in cortical neurons in vivo," Nature, Nature, vol. 475(7357), pages 501-505, July.
    3. Maria Lavzin & Sophia Rapoport & Alon Polsky & Liora Garion & Jackie Schiller, 2012. "Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo," Nature, Nature, vol. 490(7420), pages 397-401, October.
    4. Matthew E. Larkum & J. Julius Zhu & Bert Sakmann, 1999. "A new cellular mechanism for coupling inputs arriving at different cortical layers," Nature, Nature, vol. 398(6725), pages 338-341, March.
    5. Ning-long Xu & Mark T. Harnett & Stephen R. Williams & Daniel Huber & Daniel H. O’Connor & Karel Svoboda & Jeffrey C. Magee, 2012. "Nonlinear dendritic integration of sensory and motor input during an active sensing task," Nature, Nature, vol. 492(7428), pages 247-251, December.
    6. Jackie Schiller & Guy Major & Helmut J. Koester & Yitzhak Schiller, 2000. "NMDA spikes in basal dendrites of cortical pyramidal neurons," Nature, Nature, vol. 404(6775), pages 285-289, March.
    7. Johannes J. Letzkus & Steffen B. E. Wolff & Elisabeth M. M. Meyer & Philip Tovote & Julien Courtin & Cyril Herry & Andreas Lüthi, 2011. "A disinhibitory microcircuit for associative fear learning in the auditory cortex," Nature, Nature, vol. 480(7377), pages 331-335, December.
    8. Lyle J. Borg-Graham & Cyril Monier & Yves Frégnac, 1998. "Visual input evokes transient and strong shunting inhibition in visual cortical neurons," Nature, Nature, vol. 393(6683), pages 369-373, May.
    9. Masanori Murayama & Enrique Pérez-Garci & Thomas Nevian & Tobias Bock & Walter Senn & Matthew E. Larkum, 2009. "Dendritic encoding of sensory stimuli controlled by deep cortical interneurons," Nature, Nature, vol. 457(7233), pages 1137-1141, February.
    10. Attila Losonczy & Judit K. Makara & Jeffrey C. Magee, 2008. "Compartmentalized dendritic plasticity and input feature storage in neurons," Nature, Nature, vol. 452(7186), pages 436-441, March.
    11. Spencer L. Smith & Ikuko T. Smith & Tiago Branco & Michael Häusser, 2013. "Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo," Nature, Nature, vol. 503(7474), pages 115-120, November.
    12. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    13. Ho Ko & Sonja B. Hofer & Bruno Pichler & Katherine A. Buchanan & P. Jesper Sjöström & Thomas D. Mrsic-Flogel, 2011. "Functional specificity of local synaptic connections in neocortical networks," Nature, Nature, vol. 473(7345), pages 87-91, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas E. Chater & Maximilian F. Eggl & Yukiko Goda & Tatjana Tchumatchenko, 2024. "Competitive processes shape multi-synapse plasticity along dendritic segments," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    4. Etay Hay & Sean Hill & Felix Schürmann & Henry Markram & Idan Segev, 2011. "Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-18, July.
    5. Linda Judák & Balázs Chiovini & Gábor Juhász & Dénes Pálfi & Zsolt Mezriczky & Zoltán Szadai & Gergely Katona & Benedek Szmola & Katalin Ócsai & Bernadett Martinecz & Anna Mihály & Ádám Dénes & Bálint, 2022. "Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    10. Pierre Yger & Kenneth D Harris, 2013. "The Convallis Rule for Unsupervised Learning in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    11. Romain Daniel Cazé & Mark Humphries & Boris Gutkin, 2013. "Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-15, February.
    12. Sadra Sadeh & Stefan Rotter, 2015. "Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-17, January.
    13. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    15. Jianian Lin & Zongyue Cheng & Guang Yang & Meng Cui, 2022. "Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Jan C. Frankowski & Alexa Tierno & Shreya Pavani & Quincy Cao & David C. Lyon & Robert F. Hunt, 2022. "Brain-wide reconstruction of inhibitory circuits after traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    20. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.