IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001099.html
   My bibliography  Save this article

Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

Author

Listed:
  • Melody K Morris
  • Julio Saez-Rodriguez
  • David C Clarke
  • Peter K Sorger
  • Douglas A Lauffenburger

Abstract

Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.Author Summary: Over the past few years, many methods have been developed to construct large-scale networks from the literature or databases of genetic and physical interactions. With the advent of high-throughput biochemical methods, it is also possible to measure the states and activities of many proteins in these biochemical networks under different conditions of cellular stimulation and perturbation. Here we use constrained fuzzy logic to systematically compare interaction networks to experimental data. This systematic comparison elucidates interactions that were theoretically possible but not actually operating in the biological system of interest, as well as data that was not described by interactions in the prior knowledge network, pointing to a need to increase our knowledge in specific parts of the network. Furthermore, the result of this comparison is a trained, quantitative model that can be used to make a priori quantitative predictions about how the cellular protein network will respond in conditions not initially tested.

Suggested Citation

  • Melody K Morris & Julio Saez-Rodriguez & David C Clarke & Peter K Sorger & Douglas A Lauffenburger, 2011. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-20, March.
  • Handle: RePEc:plo:pcbi00:1001099
    DOI: 10.1371/journal.pcbi.1001099
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001099
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001099&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Mitsos & Ioannis N Melas & Paraskeuas Siminelakis & Aikaterini D Chairakaki & Julio Saez-Rodriguez & Leonidas G Alexopoulos, 2009. "Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    2. Kathryn Miller-Jensen & Kevin A. Janes & Joan S. Brugge & Douglas A. Lauffenburger, 2007. "Common effector processing mediates cell-specific responses to stimuli," Nature, Nature, vol. 448(7153), pages 604-608, August.
    3. Rong Lu & Florian Markowetz & Richard D. Unwin & Jeffrey T. Leek & Edoardo M. Airoldi & Ben D. MacArthur & Alexander Lachmann & Roye Rozov & Avi Ma’ayan & Laurie A. Boyer & Olga G. Troyanskaya & Antho, 2009. "Systems-level dynamic analyses of fate change in murine embryonic stem cells," Nature, Nature, vol. 462(7271), pages 358-362, November.
    4. Will D Penny & Klaas E Stephan & Jean Daunizeau & Maria J Rosa & Karl J Friston & Thomas M Schofield & Alex P Leff, 2010. "Comparing Families of Dynamic Causal Models," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.
    2. Evan J Molinelli & Anil Korkut & Weiqing Wang & Martin L Miller & Nicholas P Gauthier & Xiaohong Jing & Poorvi Kaushik & Qin He & Gordon Mills & David B Solit & Christine A Pratilas & Martin Weigt & A, 2013. "Perturbation Biology: Inferring Signaling Networks in Cellular Systems," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-23, December.
    3. Johan Kerkhofs & Liesbet Geris, 2015. "A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    4. Ioannis N Melas & Regina Samaga & Leonidas G Alexopoulos & Steffen Klamt, 2013. "Detecting and Removing Inconsistencies between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on Interaction Graphs," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-19, September.
    5. Vladimir Dobrić & Pavle Milošević & Aleksandar Rakićević & Bratislav Petrović & Ana Poledica, 2017. "Interpolative Boolean Networks," Complexity, Hindawi, vol. 2017, pages 1-15, October.
    6. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    2. L. Bonetti & G. Fernández-Rubio & F. Carlomagno & M. Dietz & D. Pantazis & P. Vuust & M. L. Kringelbach, 2024. "Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Qian Wan & Ranadip Pal, 2014. "An Ensemble Based Top Performing Approach for NCI-DREAM Drug Sensitivity Prediction Challenge," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    4. Moe Okayasu & Tensei Inukai & Daiki Tanaka & Kaho Tsumura & Reiko Shintaki & Masaki Takeda & Kiyoshi Nakahara & Koji Jimura, 2023. "The Stroop effect involves an excitatory–inhibitory fronto-cerebellar loop," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    6. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    7. Federica Eduati & Alberto Corradin & Barbara Di Camillo & Gianna Toffolo, 2010. "A Boolean Approach to Linear Prediction for Signaling Network Modeling," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-6, September.
    8. Ahmed A Moustafa & Jony Sheynin & Catherine E Myers, 2015. "The Role of Informative and Ambiguous Feedback in Avoidance Behavior: Empirical and Computational Findings," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    9. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Lixin Wang & B. Bishal Paudel & R. Anthony McKnight & Kevin A. Janes, 2023. "Nucleocytoplasmic transport of active HER2 causes fractional escape from the DCIS-like state," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    12. Stefan Balabanov & Thomas Wilhelm & Simone Venz & Gunhild Keller & Christian Scharf & Heike Pospisil & Melanie Braig & Christine Barett & Carsten Bokemeyer & Reinhard Walther & Tim H Brümmendorf & And, 2013. "Combination of a Proteomics Approach and Reengineering of Meso Scale Network Models for Prediction of Mode-of-Action for Tyrosine Kinase Inhibitors," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    13. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. repec:dau:papers:123456789/9572 is not listed on IDEAS
    15. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Zhiwei Ji & Jing Su & Chenglin Liu & Hongyan Wang & Deshuang Huang & Xiaobo Zhou, 2014. "Integrating Genomics and Proteomics Data to Predict Drug Effects Using Binary Linear Programming," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    17. Amir Dezfouli & Bernard W Balleine, 2013. "Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-14, December.
    18. Jean Daunizeau & Kerstin Preuschoff & Karl Friston & Klaas Stephan, 2011. "Optimizing Experimental Design for Comparing Models of Brain Function," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-18, November.
    19. Angela Re & Levi Waldron & Alessandro Quattrone, 2016. "Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-25, December.
    20. Ioannis N Melas & Regina Samaga & Leonidas G Alexopoulos & Steffen Klamt, 2013. "Detecting and Removing Inconsistencies between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on Interaction Graphs," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-19, September.
    21. Fabien Vinckier & Lionel Rigoux & Irma T Kurniawan & Chen Hu & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2019. "Sour grapes and sweet victories: How actions shape preferences," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.