IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2005399.html
   My bibliography  Save this article

The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas

Author

Listed:
  • Xilin Zhang
  • Nicole Mlynaryk
  • Sara Ahmed
  • Shruti Japee
  • Leslie G Ungerleider

Abstract

Feature-based attention has a spatially global effect, i.e., responses to stimuli that share features with an attended stimulus are enhanced not only at the attended location but throughout the visual field. However, how feature-based attention modulates cortical neural responses at unattended locations remains unclear. Here we used functional magnetic resonance imaging (fMRI) to examine this issue as human participants performed motion- (Experiment 1) and color- (Experiment 2) based attention tasks. Results indicated that, in both experiments, the respective visual processing areas (middle temporal area [MT+] for motion and V4 for color) as well as early visual, parietal, and prefrontal areas all showed the classic feature-based attention effect, with neural responses to the unattended stimulus significantly elevated when it shared the same feature with the attended stimulus. Effective connectivity analysis using dynamic causal modeling (DCM) showed that this spatially global effect in the respective visual processing areas (MT+ for motion and V4 for color), intraparietal sulcus (IPS), frontal eye field (FEF), medial frontal gyrus (mFG), and primary visual cortex (V1) was derived by feedback from the inferior frontal junction (IFJ). Complementary effective connectivity analysis using Granger causality modeling (GCM) confirmed that, in both experiments, the node with the highest outflow and netflow degree was IFJ, which was thus considered to be the source of the network. These results indicate a source for the spatially global effect of feature-based attention in the human prefrontal cortex.Author summary: Attentional selection is the mechanism by which relevant sensory information is processed preferentially. Feature-based attention plays a key role in identifying an attentional target in a complex scene, because we often know the features of the target but not its exact location. The ability to quickly select the target is mainly attributed to enhancement of responses to stimuli that share features with an attended stimulus, not only at the attended location but throughout the whole visual field. However, little is known regarding how feature-based attention modulates brain responses at unattended locations. Here we used fMRI and advanced connectivity analyses to examine human subjects as they performed either motion- or color-based attention tasks. Our results indicated that the visual processing areas for motion and color showed the feature-based attention effect. Effective connectivity analysis showed that this feature-based attention effect was derived by feedback from the inferior frontal junction, an area of the posterior lateral prefrontal cortex involved in many different cognitive processes, including spatial attention and working memory. Further modeling confirmed that the inferior frontal junction showed connectivity features supporting its role as the source of the network. Our results support the hypothesis that the inferior frontal junction plays a key role in the spatially global effect of feature-based attention.

Suggested Citation

  • Xilin Zhang & Nicole Mlynaryk & Sara Ahmed & Shruti Japee & Leslie G Ungerleider, 2018. "The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas," PLOS Biology, Public Library of Science, vol. 16(6), pages 1-28, June.
  • Handle: RePEc:plo:pbio00:2005399
    DOI: 10.1371/journal.pbio.2005399
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005399
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2005399&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2005399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xilin Zhang & Shruti Japee & Zaid Safiullah & Nicole Mlynaryk & Leslie G Ungerleider, 2016. "A Normalization Framework for Emotional Attention," PLOS Biology, Public Library of Science, vol. 14(11), pages 1-25, November.
    2. Karl Friston, 2009. "Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging," PLOS Biology, Public Library of Science, vol. 7(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaogan Yan & Yong He, 2011. "Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-16, August.
    2. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
    3. Oscar Miranda-Dominguez & Brian D Mills & Samuel D Carpenter & Kathleen A Grant & Christopher D Kroenke & Joel T Nigg & Damien A Fair, 2014. "Connectotyping: Model Based Fingerprinting of the Functional Connectome," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-16, November.
    4. Liane Schmidt & Maël Lebreton & Marie-Laure Cléry-Melin & Jean Daunizeau & Mathias Pessiglione, 2012. "Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort," PLOS Biology, Public Library of Science, vol. 10(2), pages 1-13, February.
    5. Tian Ge & Keith M Kendrick & Jianfeng Feng, 2009. "A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-13, November.
    6. Vasilii V. Kuimov & Konstantin V. Simonov & Eva V. Shcherbenko & Liudmila V. Iushkova, 2023. "Ecosystems and Their Digital Models as Factors of Algocognitive Culture and Transition to New Technological Order," Social Sciences, MDPI, vol. 12(4), pages 1-11, March.
    7. Qiang Luo & Tian Ge & Fabian Grabenhorst & Jianfeng Feng & Edmund T Rolls, 2013. "Attention-Dependent Modulation of Cortical Taste Circuits Revealed by Granger Causality with Signal-Dependent Noise," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.
    8. Luca M. Possati, 2021. "Freud and the algorithm: neuropsychoanalysis as a framework to understand artificial general intelligence," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-19, December.
    9. Tina T. Liu & Jason Z Fu & Yuhui Chai & Shruti Japee & Gang Chen & Leslie G. Ungerleider & Elisha P. Merriam, 2022. "Layer-specific, retinotopically-diffuse modulation in human visual cortex in response to viewing emotionally expressive faces," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. repec:jss:jstsof:44:i13 is not listed on IDEAS
    11. Will D Penny & Klaas E Stephan & Jean Daunizeau & Maria J Rosa & Karl J Friston & Thomas M Schofield & Alex P Leff, 2010. "Comparing Families of Dynamic Causal Models," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2005399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.