IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v9y2022i1d10.1057_s41599-022-01142-3.html
   My bibliography  Save this article

Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US

Author

Listed:
  • Lu Zhong

    (Rensselaer Polytechnic Institute
    Rensselaer Polytechnic Institute)

  • Mamadou Diagne

    (Rensselaer Polytechnic Institute)

  • Qi Wang

    (Northeastern University)

  • Jianxi Gao

    (Rensselaer Polytechnic Institute
    Rensselaer Polytechnic Institute)

Abstract

The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R2 > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving Re to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles.

Suggested Citation

  • Lu Zhong & Mamadou Diagne & Qi Wang & Jianxi Gao, 2022. "Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01142-3
    DOI: 10.1057/s41599-022-01142-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-022-01142-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-022-01142-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuchang Gao & Lixing Han, 2012. "Implementing the Nelder-Mead simplex algorithm with adaptive parameters," Computational Optimization and Applications, Springer, vol. 51(1), pages 259-277, January.
    2. Giacomo Baggio & Danielle S. Bassett & Fabio Pasqualetti, 2021. "Data-driven control of complex networks," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Jianxi Gao & Yang-Yu Liu & Raissa M. D'Souza & Albert-László Barabási, 2014. "Target control of complex networks," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    5. Smriti Mallapaty & Ewen Callaway & Max Kozlov & Heidi Ledford & John Pickrell & Richard Van Noorden, 2021. "How COVID vaccines shaped 2021 in eight powerful charts," Nature, Nature, vol. 600(7890), pages 580-583, December.
    6. Surya Singh & Mujaheed Shaikh & Katharina Hauck & Marisa Miraldo, 2021. "Impacts of introducing and lifting nonpharmaceutical interventions on COVID-19 daily growth rate and compliance in the United States," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(12), pages 2021359118-, March.
    7. Shengjie Lai & Nick W. Ruktanonchai & Liangcai Zhou & Olivia Prosper & Wei Luo & Jessica R. Floyd & Amy Wesolowski & Mauricio Santillana & Chi Zhang & Xiangjun Du & Hongjie Yu & Andrew J. Tatem, 2020. "Effect of non-pharmaceutical interventions to contain COVID-19 in China," Nature, Nature, vol. 585(7825), pages 410-413, September.
    8. Sang-Wook (Stanley) Cho, 2020. "Quantifying the impact of nonpharmaceutical interventions during the COVID-19 outbreak: The case of Sweden," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 323-344.
    9. Weihsueh A. Chiu & Rebecca Fischer & Martial L. Ndeffo-Mbah, 2020. "State-level needs for social distancing and contact tracing to contain COVID-19 in the United States," Nature Human Behaviour, Nature, vol. 4(10), pages 1080-1090, October.
    10. Nina Haug & Lukas Geyrhofer & Alessandro Londei & Elma Dervic & Amélie Desvars-Larrive & Vittorio Loreto & Beate Pinior & Stefan Thurner & Peter Klimek, 2020. "Ranking the effectiveness of worldwide COVID-19 government interventions," Nature Human Behaviour, Nature, vol. 4(12), pages 1303-1312, December.
    11. Solomon Hsiang & Daniel Allen & Sébastien Annan-Phan & Kendon Bell & Ian Bolliger & Trinetta Chong & Hannah Druckenmiller & Luna Yue Huang & Andrew Hultgren & Emma Krasovich & Peiley Lau & Jaecheol Le, 2020. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic," Nature, Nature, vol. 584(7820), pages 262-267, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Ge & Xilin Wu & Wenbin Zhang & Xiaoli Wang & Die Zhang & Jianghao Wang & Haiyan Liu & Zhoupeng Ren & Nick W. Ruktanonchai & Corrine W. Ruktanonchai & Eimear Cleary & Yongcheng Yao & Amy Wesolowsk, 2023. "Effects of public-health measures for zeroing out different SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. William Clyde & Andreas Kakolyris & Georgios Koimisis, 2021. "A Study of the Effectiveness of Governmental Strategies for Managing Mortality from COVID-19," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 47(4), pages 487-505, October.
    3. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Kang, Liujiang, 2023. "Interaction between travel restriction policies and the spread of COVID-19," Transport Policy, Elsevier, vol. 136(C), pages 209-227.
    4. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    6. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Matthew Spiegel & Heather Tookes, 2021. "Business Restrictions and COVID-19 Fatalities [The immediate effect of COVID-19 policies on social distancing behavior in the United States]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5266-5308.
    8. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    9. Ugofilippo Basellini & Diego Alburez-Gutierrez & Emanuele Del Fava & Daniela Perrotta & Marco Bonetti & Carlo Giovanni Camarda & Emilio Zagheni, 2020. "Linking excess mortality to Google mobility data during the COVID-19 pandemic in England and Wales," Working Papers axehlaypkgkzhr-blqv4, French Institute for Demographic Studies.
    10. Jinlei Qi & Dandan Zhang & Xiang Zhang & Tanakao Takana & Yuhang Pan & Peng Yin & Jiangmei Liu & Shuocen Liu & George F. Gao & Guojun He & Maigeng Zhou, 2022. "Short- and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China," Nature Human Behaviour, Nature, vol. 6(1), pages 55-63, January.
    11. Siqing Shan & Feng Zhao & Menghan Sun & Yinong Li & Yangzi Yang, 2022. "Suit the Remedy to the Case—The Effectiveness of COVID-19 Nonpharmaceutical Prevention and Control Policies Based on Individual Going-Out Behavior," IJERPH, MDPI, vol. 19(23), pages 1-18, December.
    12. Martin Schonger & Daniela Sele, 2020. "How to better communicate the exponential growth of infectious diseases," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-13, December.
    13. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CESifo Working Paper Series 8977, CESifo.
    14. Bo Huang & Jionghua Wang & Jixuan Cai & Shiqi Yao & Paul Kay Sheung Chan & Tony Hong-wing Tam & Ying-Yi Hong & Corrine W. Ruktanonchai & Alessandra Carioli & Jessica R. Floyd & Nick W. Ruktanonchai & , 2021. "Integrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese cities," Nature Human Behaviour, Nature, vol. 5(6), pages 695-705, June.
    15. Galanis, Giorgos & Georgiadis, Andreas, 2024. "Socioeconomic conditions and contagion dynamics of the COVID-19 pandemic with and without mitigation measures: Evidence from 185 countries," World Development, Elsevier, vol. 175(C).
    16. Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
    17. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Theologos Dergiades & Costas Milas & Elias Mossialos & Theodore Panagiotidis, 2023. "COVID-19 anti-contagion policies and economic support measures in the USA," Oxford Economic Papers, Oxford University Press, vol. 75(3), pages 613-630.
    19. Da Gong & Andong Yan & Jialin Yu, 2024. "The Costs of Zero-Covid: Effects of Anti-contagious Policy on Labor Market Outcomes in China," Journal of Labor Research, Springer, vol. 45(3), pages 436-478, September.
    20. Mellace, Giovanni & Crudu, Frederico & Di Stefano, Roberta & Tiezzi, Silvia, 2022. "The Gray Zone," Discussion Papers on Economics 5/2022, University of Southern Denmark, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01142-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.