IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v4y2020i10d10.1038_s41562-020-00969-7.html
   My bibliography  Save this article

State-level needs for social distancing and contact tracing to contain COVID-19 in the United States

Author

Listed:
  • Weihsueh A. Chiu

    (Texas A&M University)

  • Rebecca Fischer

    (Texas A&M University)

  • Martial L. Ndeffo-Mbah

    (Texas A&M University
    Texas A&M University)

Abstract

Starting in mid-May 2020, many US states began relaxing social-distancing measures that were put in place to mitigate the spread of COVID-19. To evaluate the impact of relaxation of restrictions on COVID-19 dynamics and control, we developed a transmission dynamic model and calibrated it to US state-level COVID-19 cases and deaths. We used this model to evaluate the impact of social distancing, testing and contact tracing on the COVID-19 epidemic in each state. As of 22 July 2020, we found that only three states were on track to curtail their epidemic curve. Thirty-nine states and the District of Columbia may have to double their testing and/or tracing rates and/or rolling back reopening by 25%, while eight states require an even greater measure of combined testing, tracing and distancing. Increased testing and contact-tracing capacity is paramount for mitigating the recent large-scale increases in US cases and deaths.

Suggested Citation

  • Weihsueh A. Chiu & Rebecca Fischer & Martial L. Ndeffo-Mbah, 2020. "State-level needs for social distancing and contact tracing to contain COVID-19 in the United States," Nature Human Behaviour, Nature, vol. 4(10), pages 1080-1090, October.
  • Handle: RePEc:nat:nathum:v:4:y:2020:i:10:d:10.1038_s41562-020-00969-7
    DOI: 10.1038/s41562-020-00969-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-020-00969-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-020-00969-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Ge & Xilin Wu & Wenbin Zhang & Xiaoli Wang & Die Zhang & Jianghao Wang & Haiyan Liu & Zhoupeng Ren & Nick W. Ruktanonchai & Corrine W. Ruktanonchai & Eimear Cleary & Yongcheng Yao & Amy Wesolowsk, 2023. "Effects of public-health measures for zeroing out different SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yuan, Hang & Long, Qinyi & Huang, Guanglv & Huang, Liqin & Luo, Siyang, 2022. "Different roles of interpersonal trust and institutional trust in COVID-19 pandemic control," Social Science & Medicine, Elsevier, vol. 293(C).
    3. Siqing Shan & Feng Zhao & Menghan Sun & Yinong Li & Yangzi Yang, 2022. "Suit the Remedy to the Case—The Effectiveness of COVID-19 Nonpharmaceutical Prevention and Control Policies Based on Individual Going-Out Behavior," IJERPH, MDPI, vol. 19(23), pages 1-18, December.
    4. Jiarui Fan & Haifeng Du & Yang Wang & Xiaochen He, 2021. "The Effect of Local and Global Interventions on Epidemic Spreading," IJERPH, MDPI, vol. 18(23), pages 1-13, November.
    5. Lu Zhong & Mamadou Diagne & Qi Wang & Jianxi Gao, 2022. "Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    6. Behzad Vahedi & Morteza Karimzadeh & Hamidreza Zoraghein, 2021. "Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Kai Yin & Anirban Mondal & Martial Ndeffo-Mbah & Paromita Banerjee & Qimin Huang & David Gurarie, 2022. "Bayesian Inference for COVID-19 Transmission Dynamics in India Using a Modified SEIR Model," Mathematics, MDPI, vol. 10(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    5. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. Cristini, Annalisa & Trivin, Pedro, 2022. "Close encounters during a pandemic: Social habits and inter-generational links in the first two waves of COVID-19," Economics & Human Biology, Elsevier, vol. 47(C).
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    9. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    10. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    11. Dongxiang Pan & Mei Lin & Rushu Lan & Edward A Graviss & Dingwen Lin & Dabin Liang & Xi Long & Huifang Qin & Liwen Huang & Minying Huang & Virasakdi Chongsuvivatwong, 2018. "Tuberculosis Transmission in Households and Classrooms of Adolescent Cases Compared to the Community in China," IJERPH, MDPI, vol. 15(12), pages 1-10, December.
    12. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    13. Žiga Zaplotnik & Aleksandar Gavrić & Luka Medic, 2020. "Simulation of the COVID-19 epidemic on the social network of Slovenia: Estimating the intrinsic forecast uncertainty," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    14. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    15. Xinhua Yu, 2020. "Risk Interactions of Coronavirus Infection across Age Groups after the Peak of COVID-19 Epidemic," IJERPH, MDPI, vol. 17(14), pages 1-14, July.
    16. Rhodes, Christopher A. & House, Thomas, 2013. "The rate of convergence to early asymptotic behaviour in age-structured epidemic models," Theoretical Population Biology, Elsevier, vol. 85(C), pages 58-62.
    17. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    18. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    19. Peter Horby & Pham Quang Thai & Niel Hens & Nguyen Thi Thu Yen & Le Quynh Mai & Dang Dinh Thoang & Nguyen Manh Linh & Nguyen Thu Huong & Neal Alexander & W John Edmunds & Tran Nhu Duong & Annette Fox , 2011. "Social Contact Patterns in Vietnam and Implications for the Control of Infectious Diseases," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    20. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:4:y:2020:i:10:d:10.1038_s41562-020-00969-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.