IDEAS home Printed from https://ideas.repec.org/a/pal/gpprii/v49y2024i2d10.1057_s41288-024-00321-4.html
   My bibliography  Save this article

Mortality improvement neural-network models with autoregressive effects

Author

Listed:
  • Hung-Tsung Hsiao

    (National Sun Yat-Sen University)

  • Chou-Wen Wang

    (National Sun Yat-Sen University
    National Chengchi University)

  • I.-Chien Liu

    (National Taichung University of Science and Technology)

  • Ko-Lun Kung

    (Feng Chia University)

Abstract

In this paper, we propose a neural network (NN) architecture of mortality improvement model with cohort effect. We then extend the mortality improvement NN model to consider autoregressive effects, which allows mortality improvement to depend on the lagged mortality rates. The advantage of our NN model setup is that the parameters of period and cohort effects are implicitly estimated by the NN models, and hence, the mortality projection can be obtained without taking the extra steps of selecting and estimating the suitable time-series model for period and cohort effects. Our empirical results suggests that, based on 48 populations in the Human Mortality Database with complete sets of observations from 1950 with the age span of 55–90, the NN models with cohort and autoregressive effects improve the forecast accuracy of mortality rate projections and provide better prediction performance.

Suggested Citation

  • Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
  • Handle: RePEc:pal:gpprii:v:49:y:2024:i:2:d:10.1057_s41288-024-00321-4
    DOI: 10.1057/s41288-024-00321-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41288-024-00321-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41288-024-00321-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
    2. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    3. Yajing Xu & Michael Sherris & Jonathan Ziveyi, 2020. "Continuous-time multi-cohort mortality modelling with affine processes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(6), pages 526-552, July.
    4. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    5. Andrea Nigri & Susanna Levantesi & Mario Marino & Salvatore Scognamiglio & Francesca Perla, 2019. "A Deep Learning Integrated Lee–Carter Model," Risks, MDPI, vol. 7(1), pages 1-16, March.
    6. Chou-Wen Wang & Hong-Chih Huang & I-Chien Liu, 2013. "Mortality Modeling With Non-Gaussian Innovations and Applications to the Valuation of Longevity Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 775-798, September.
    7. Michael Sherris & Yajing Xu & Jonathan Ziveyi, 2020. "Cohort and value-based multi-country longevity risk management," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(7), pages 650-676, August.
    8. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    9. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    10. Richman, Ronald & Wüthrich, Mario V., 2021. "A neural network extension of the Lee–Carter model to multiple populations," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 346-366, July.
    11. Johnny Siu-Hang Li & Wai-Sum Chan & Rui Zhou, 2017. "Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 1025-1065, September.
    12. Yajing Xu & Michael Sherris & Jonathan Ziveyi, 2020. "Market Price of Longevity Risk for a Multi‐Cohort Mortality Model With Application to Longevity Bond Option Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(3), pages 571-595, September.
    13. Chou-Wen Wang & Sharon S. Yang, 2013. "Pricing Survivor Derivatives With Cohort Mortality Dependence Under the Lee–Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 1027-1056, December.
    14. Miguel Santolino, 2020. "The Lee-Carter quantile mortality model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(7), pages 614-633, August.
    15. Haberman, Steven & Renshaw, Arthur, 2013. "Modelling and projecting mortality improvement rates using a cohort perspective," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 150-168.
    16. Wang, Chou-Wen & Yang, Sharon S. & Huang, Hong-Chih, 2015. "Modeling multi-country mortality dependence and its application in pricing survivor index swaps—A dynamic copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 30-39.
    17. Tsai, Cary Chi-Liang & Wu, Adelaide Di, 2020. "Incorporating hierarchical credibility theory into modelling of multi-country mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 37-54.
    18. Wang, Chou-Wen & Zhang, Jinggong & Zhu, Wenjun, 2021. "Neighbouring Prediction For Mortality," ASTIN Bulletin, Cambridge University Press, vol. 51(3), pages 689-718, September.
    19. Miyata, Akihiro & Matsuyama, Naoki, 2022. "Extending The Lee–Carter Model With Variational Autoencoder: A Fusion Of Neural Network And Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 52(3), pages 789-812, September.
    20. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
    21. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    22. Kung, Ko-Lun & Liu, I-Chien & Wang, Chou-Wen, 2021. "Modeling and pricing longevity derivatives using Skellam distribution," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 341-354.
    23. Vasil Enchev & Torsten Kleinow & Andrew J. G. Cairns, 2017. "Multi-population mortality models: fitting, forecasting and comparisons," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(4), pages 319-342, April.
    24. Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
    25. Lin, Tzuling & Wang, Chou-Wen & Tsai, Cary Chi-Liang, 2015. "Age-specific copula-AR-GARCH mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 110-124.
    26. Wang, Zihe & Li, Johnny Siu-Hang, 2016. "A DCC-GARCH multi-population mortality model and its applications to pricing catastrophic mortality bonds," Finance Research Letters, Elsevier, vol. 16(C), pages 103-111.
    27. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
    28. Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
    29. Hainaut, Donatien, 2018. "A Neural-Network Analyzer for Mortality Forecast," LIDAM Reprints ISBA 2018027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    30. Yumo Dong & Fei Huang & Honglin Yu & Steven Haberman, 2020. "Multi-population mortality forecasting using tensor decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(8), pages 754-775, September.
    31. Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
    32. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    33. Philippe Deprez & Pavel V. Shevchenko & Mario V. Wuthrich, 2017. "Machine Learning Techniques for Mortality Modeling," Papers 1705.03396, arXiv.org.
    34. Scognamiglio, Salvatore, 2022. "Calibrating The Lee-Carter And The Poisson Lee-Carter Models Via Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 519-561, May.
    35. Francesca Perla & Ronald Richman & Salvatore Scognamiglio & Mario V. Wüthrich, 2021. "Time-series forecasting of mortality rates using deep learning," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(7), pages 572-598, August.
    36. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    37. Huynh, Nhan & Ludkovski, Mike, 2021. "Multi-output Gaussian processes for multi-population longevity modelling," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 318-345, July.
    38. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    39. Schnürch, Simon & Korn, Ralf, 2022. "Point And Interval Forecasts Of Death Rates Using Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 333-360, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    8. Tsai, Cary Chi-Liang & Wu, Adelaide Di, 2020. "Incorporating hierarchical credibility theory into modelling of multi-country mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 37-54.
    9. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
    10. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    11. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    12. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    13. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    14. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    15. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    16. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    17. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    18. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    19. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    20. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:gpprii:v:49:y:2024:i:2:d:10.1057_s41288-024-00321-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.