IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v63y2015icp121-134.html
   My bibliography  Save this article

A step-by-step guide to building two-population stochastic mortality models

Author

Listed:
  • Li, Johnny Siu-Hang
  • Zhou, Rui
  • Hardy, Mary

Abstract

Two-population stochastic mortality models play a crucial role in the securitization of longevity risk. In particular, they allow us to quantify the population basis risk when longevity hedges are built from broad-based mortality indexes. In this paper, we propose and illustrate a systematic process for constructing a two-population mortality model for a pair of populations. The process encompasses four steps, namely (1) determining the conditions for biological reasonableness, (2) identifying an appropriate base model specification, (3) choosing a suitable time-series process and correlation structure for projecting period and/or cohort effects into the future, and (4) model evaluation.

Suggested Citation

  • Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
  • Handle: RePEc:eee:insuma:v:63:y:2015:i:c:p:121-134
    DOI: 10.1016/j.insmatheco.2015.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Andrew Hunt & David Blake, 2014. "A General Procedure for Constructing Mortality Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 116-138.
    3. Wai-Sum Chan & Johnny Li & Jackie Li, 2014. "The CBD Mortality Indexes: Modeling and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 38-58.
    4. Jarner, Søren Fiig & Kryger, Esben Masotti, 2011. "Modelling Adult Mortality in Small Populations: The Saint Model," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 377-418, November.
    5. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    6. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2011. "Economic Pricing of Mortality-linked Securities in the Presence of Population Basis Risk," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 544-566, October.
    7. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    8. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    9. Willets, R. C., 2004. "The Cohort Effect: Insights and Explanations," British Actuarial Journal, Cambridge University Press, vol. 10(4), pages 833-877, October.
    10. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    11. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    12. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & David Epstein & Marwa Khalaf-Allah, 2010. "Backtesting Stochastic Mortality Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(3), pages 281-298.
    13. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    14. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    15. Rui Zhou & Yujiao Wang & Kai Kaufhold & Johnny Li & Ken Tan, 2014. "Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 150-167.
    16. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    17. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    18. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    19. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    20. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    4. Li, Johnny Siu-Hang & Liu, Yanxin & Chan, Wai-Sum, 2023. "Hedging longevity risk under non-Gaussian state-space stochastic mortality models: A mean-variance-skewness-kurtosis approach," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 96-121.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    7. Kim, Joseph H.T. & Li, Johnny S.H., 2017. "Risk-neutral valuation of the non-recourse protection in reverse mortgages: A case study for Korea," Emerging Markets Review, Elsevier, vol. 30(C), pages 133-154.
    8. Kaakaï, Sarah & Labit Hardy, Héloïse & Arnold, Séverine & El Karoui, Nicole, 2019. "How can a cause-of-death reduction be compensated for by the population heterogeneity? A dynamic approach," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 16-37.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    10. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
    11. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
    12. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.
    13. McCarthy, David G. & Wang, Po-Lin, 2021. "Pooling mortality risk in Eurozone state pension liabilities: An application of a Bayesian coherent multi-population cohort-based mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 459-485.
    14. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    15. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    16. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
    17. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    18. Li, Johnny Siu-Hang & Liu, Yanxin, 2020. "The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 1-26.
    19. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    20. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    21. Matteo Lizzi, 2024. "A Contrast-Tree-Based Approach to Two-Population Models," Risks, MDPI, vol. 12(10), pages 1-17, September.
    22. Fadoua Zeddouk & Pierre Devolder, 2020. "Longevity Modelling and Pricing under a Dependent Multi-Cohort Framework," Risks, MDPI, vol. 8(4), pages 1-23, November.
    23. Tsai, Cary Chi-Liang & Wu, Adelaide Di, 2020. "Incorporating hierarchical credibility theory into modelling of multi-country mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 37-54.
    24. Farid Flici & Frédéric Planchet, 2019. "Experience Prospective Life-Tables for the Algerian Retirees," Risks, MDPI, vol. 7(2), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    4. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    5. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.
    6. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    7. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    8. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    9. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    10. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    11. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    12. Li, Johnny Siu-Hang & Liu, Yanxin, 2021. "Recent declines in life expectancy: Implication on longevity risk hedging," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 376-394.
    13. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    14. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    15. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    16. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
    17. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    18. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    19. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    20. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:63:y:2015:i:c:p:121-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.