IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v51y2021i3p689-718_1.html
   My bibliography  Save this article

Neighbouring Prediction For Mortality

Author

Listed:
  • Wang, Chou-Wen
  • Zhang, Jinggong
  • Zhu, Wenjun

Abstract

We propose a new neighbouring prediction model for mortality forecasting. For each mortality rate at age x in year t, mx,t, we construct an image of neighbourhood mortality data around mx,t, that is, Ꜫmx,t (x1, x2, s), which includes mortality information for ages in [x-x1, x+x2], lagging k years (1 ≤ k ≤ s). Combined with the deep learning model – convolutional neural network, this framework is able to capture the intricate nonlinear structure in the mortality data: the neighbourhood effect, which can go beyond the directions of period, age, and cohort as in classic mortality models. By performing an extensive empirical analysis on all the 41 countries and regions in the Human Mortality Database, we find that the proposed models achieve superior forecasting performance. This framework can be further enhanced to capture the patterns and interactions between multiple populations.

Suggested Citation

  • Wang, Chou-Wen & Zhang, Jinggong & Zhu, Wenjun, 2021. "Neighbouring Prediction For Mortality," ASTIN Bulletin, Cambridge University Press, vol. 51(3), pages 689-718, September.
  • Handle: RePEc:cup:astinb:v:51:y:2021:i:3:p:689-718_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036121000131/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Santolino, 2023. "Should Selection of the Optimum Stochastic Mortality Model Be Based on the Original or the Logarithmic Scale of the Mortality Rate?," Risks, MDPI, vol. 11(10), pages 1-21, September.
    2. Thilini Dulanjali Kularatne & Jackie Li & Yanlin Shi, 2022. "Forecasting Mortality Rates with a Two-Step LASSO Based Vector Autoregressive Model," Risks, MDPI, vol. 10(11), pages 1-23, November.
    3. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    4. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:51:y:2021:i:3:p:689-718_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.