IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i2p346-366_8.html
   My bibliography  Save this article

A neural network extension of the Lee–Carter model to multiple populations

Author

Listed:
  • Richman, Ronald
  • Wüthrich, Mario V.

Abstract

The Lee–Carter (LC) model is a basic approach to forecasting mortality rates of a single population. Although extensions of the LC model to forecasting rates for multiple populations have recently been proposed, the structure of these extended models is hard to justify and the models are often difficult to calibrate, relying on customised optimisation schemes. Based on the paradigm of representation learning, we extend the LCmodel to multiple populations using neural networks, which automatically select an optimal model structure. We fit this model to mortality rates since 1950 for all countries in the Human Mortality Database and observe that the out-of-sample forecasting performance of the model is highly competitive.

Suggested Citation

  • Richman, Ronald & Wüthrich, Mario V., 2021. "A neural network extension of the Lee–Carter model to multiple populations," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 346-366, July.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:346-366_8
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499519000071/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Nigri & Susanna Levantesi & Jose Manuel Aburto, 2022. "Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(8), pages 199-232.
    2. Thilini Dulanjali Kularatne & Jackie Li & Yanlin Shi, 2022. "Forecasting Mortality Rates with a Two-Step LASSO Based Vector Autoregressive Model," Risks, MDPI, vol. 10(11), pages 1-23, November.
    3. Mark Kiermayer & Christian Wei{ss}, 2022. "Neural calibration of hidden inhomogeneous Markov chains -- Information decompression in life insurance," Papers 2201.02397, arXiv.org.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    5. Benjamin Avanzi & Greg Taylor & Melantha Wang & Bernard Wong, 2023. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," Papers 2301.12710, arXiv.org.
    6. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:2:p:346-366_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.