IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i02p481-508_00.html
   My bibliography  Save this article

A Neural-Network Analyzer For Mortality Forecast

Author

Listed:
  • Hainaut, Donatien

Abstract

This article proposes a neural-network approach to predict and simulate human mortality rates. This semi-parametric model is capable to detect and duplicate non-linearities observed in the evolution of log-forces of mortality. The method proceeds in two steps. During the first stage, a neural-network-based generalization of the principal component analysis summarizes the information carried by the surface of log-mortality rates in a small number of latent factors. In the second step, these latent factors are forecast with an econometric model. The term structure of log-forces of mortality is next reconstructed by an inverse transformation. The neural analyzer is adjusted to French, UK and US mortality rates, over the period 1946–2000 and validated with data from 2001 to 2014. Numerical experiments reveal that the neural approach has an excellent predictive power, compared to the Lee–Carter model with and without cohort effects.

Suggested Citation

  • Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:02:p:481-508_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036117000459/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Andrea Nigri & Susanna Levantesi & Jose Manuel Aburto, 2022. "Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(8), pages 199-232.
    4. Miguel Santolino, 2023. "Should Selection of the Optimum Stochastic Mortality Model Be Based on the Original or the Logarithmic Scale of the Mortality Rate?," Risks, MDPI, vol. 11(10), pages 1-21, September.
    5. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    6. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    7. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    8. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    9. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
    10. Jin, Zhuo & Yang, Hailiang & Yin, G., 2021. "A hybrid deep learning method for optimal insurance strategies: Algorithms and convergence analysis," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 262-275.
    11. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    12. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    13. Jose Garrido & Yuxiang Shang & Ran Xu, 2024. "LSTM-Based Coherent Mortality Forecasting for Developing Countries," Risks, MDPI, vol. 12(2), pages 1-24, February.
    14. Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
    15. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    16. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:02:p:481-508_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.