IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v116y2024icp114-133.html
   My bibliography  Save this article

Quantile mortality modelling of multiple populations via neural networks

Author

Listed:
  • Corsaro, Stefania
  • Marino, Zelda
  • Scognamiglio, Salvatore

Abstract

Quantiles of the mortality rates are relevant in life insurance to control longevity risk properly. Recently, Santolino (2020) adapts the framework of the popular Lee-Carter model to compute the conditional quantiles of the mortality rates. The parameters of the quantile Lee-Carter model are fitted on the mortality data of the population of interest, ignoring the information related to the others. In this paper, we show that more robust parameter estimates can be obtained exploiting the mortality experiences of multiple populations. A neural network is employed to calibrate individual quantile Lee-Carter models jointly using all the available mortality data. In this setting, some common network parameters are used to learn the age and period effects of multiple quantile LC models. Numerical experiments performed on all the countries of the Human Mortality Database validate our approach. The predictions obtained considering the median level appear more accurate than those obtained with the mean models; moreover, those at the tail quantile levels capture the future mortality evolution of the populations well.

Suggested Citation

  • Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
  • Handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:114-133
    DOI: 10.1016/j.insmatheco.2024.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 2," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 230-258, July.
    2. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    3. Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
    4. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    5. Pauline Barrieu & Harry Bensusan & Nicole El Karoui & Caroline Hillairet & Stéphane Loisel & Claudia Ravanelli & Yahia Salhi, 2012. "Understanding, modelling and managing longevity risk: key issues and main challenges," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2012(3), pages 203-231.
    6. Miguel Santolino, 2020. "The Lee-Carter quantile mortality model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(7), pages 614-633, August.
    7. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    8. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    9. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    10. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    11. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    12. Vasil Enchev & Torsten Kleinow & Andrew J. G. Cairns, 2017. "Multi-population mortality models: fitting, forecasting and comparisons," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(4), pages 319-342, April.
    13. Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
    14. Andrea Gabrielli & Ronald Richman & Mario V. Wüthrich, 2020. "Neural network embedding of the over-dispersed Poisson reserving model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(1), pages 1-29, January.
    15. Richman, Ronald, 2021. "AI in actuarial science – a review of recent advances – part 1," Annals of Actuarial Science, Cambridge University Press, vol. 15(2), pages 207-229, July.
    16. Hainaut, Donatien, 2018. "A Neural-Network Analyzer for Mortality Forecast," LIDAM Reprints ISBA 2018027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    18. Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
    19. Scognamiglio, Salvatore, 2022. "Calibrating The Lee-Carter And The Poisson Lee-Carter Models Via Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 519-561, May.
    20. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    21. Francesca Perla & Ronald Richman & Salvatore Scognamiglio & Mario V. Wüthrich, 2021. "Time-series forecasting of mortality rates using deep learning," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(7), pages 572-598, August.
    22. Carfora, M.F. & Cutillo, L. & Orlando, A., 2017. "A quantitative comparison of stochastic mortality models on Italian population data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 198-214.
    23. Schnürch, Simon & Korn, Ralf, 2022. "Point And Interval Forecasts Of Death Rates Using Neural Networks," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 333-360, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    2. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    3. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    4. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    8. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    9. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    10. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    11. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    12. Salvatore Scognamiglio & Mario Marino, 2023. "Backtesting stochastic mortality models by prediction interval-based metrics," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3825-3847, August.
    13. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    14. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    15. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    16. Wang, Chou-Wen & Huang, Hong-Chih & Hong, De-Chuan, 2013. "A feasible natural hedging strategy for insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 532-541.
    17. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    18. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    19. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    20. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.

    More about this item

    Keywords

    Lee-Carter model; Multi-population mortality modelling; Multivariate time series; Human Mortality Database;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:114-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.