IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1705.03396.html
   My bibliography  Save this paper

Machine Learning Techniques for Mortality Modeling

Author

Listed:
  • Philippe Deprez
  • Pavel V. Shevchenko
  • Mario V. Wuthrich

Abstract

Various stochastic models have been proposed to estimate mortality rates. In this paper we illustrate how machine learning techniques allow us to analyze the quality of such mortality models. In addition, we present how these techniques can be used for differentiating the different causes of death in mortality modeling.

Suggested Citation

  • Philippe Deprez & Pavel V. Shevchenko & Mario V. Wuthrich, 2017. "Machine Learning Techniques for Mortality Modeling," Papers 1705.03396, arXiv.org.
  • Handle: RePEc:arx:papers:1705.03396
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1705.03396
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario V. Wuthrich & Christoph Buser, 2016. "Data Analytics for Non-Life Insurance Pricing," Swiss Finance Institute Research Paper Series 16-68, Swiss Finance Institute.
    2. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    3. Alai, Daniel H. & Arnold (-Gaille), Séverine & Sherris, Michael, 2015. "Modelling cause-of-death mortality and the impact of cause-elimination," Annals of Actuarial Science, Cambridge University Press, vol. 9(1), pages 167-186, March.
    4. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Augusto Cerqua & Roberta Di Stefano & Marco Letta & Sara Miccoli, 2021. "Local mortality estimates during the COVID-19 pandemic in Italy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1189-1217, October.
    3. Emer Owens & Barry Sheehan & Martin Mullins & Martin Cunneen & Juliane Ressel & German Castignani, 2022. "Explainable Artificial Intelligence (XAI) in Insurance," Risks, MDPI, vol. 10(12), pages 1-50, December.
    4. Mark Kiermayer & Christian Wei{ss}, 2022. "Neural calibration of hidden inhomogeneous Markov chains -- Information decompression in life insurance," Papers 2201.02397, arXiv.org.
    5. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    8. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    9. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    10. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    11. Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
    12. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    13. Andrea Nigri & Susanna Levantesi & Mario Marino & Salvatore Scognamiglio & Francesca Perla, 2019. "A Deep Learning Integrated Lee–Carter Model," Risks, MDPI, vol. 7(1), pages 1-16, March.
    14. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    15. Ufuk Beyaztas & Hanlin Shang, 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Forecasting, MDPI, vol. 4(1), pages 1-15, March.
    16. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    17. Aliki Sagianou & Peter Hatzopoulos, 2022. "Extensions on the Hatzopoulos–Sagianou Multiple-Components Stochastic Mortality Model," Risks, MDPI, vol. 10(7), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    6. Ornelas, Arelly & Guillén, Montserrat, 2013. "A Comparison between General Population Mortality and Life Tables for Insurance in Mexico under Gender Proportion Inequality || Una comparación entre la mortalidad de la población general y las tablas," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 47-67, December.
    7. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    8. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    9. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    10. Benchimol, Andrés, 2017. "Proyección de mortalidad en España mediante mixturas de modelos y análisis del impacto económico del riesgo de longevidad /Mortality Projection in Spain through Mixtures of Models and Analysis of the ," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 341-366, Mayo.
    11. Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
    12. Li, Johnny Siu-Hang & Liu, Yanxin, 2021. "Recent declines in life expectancy: Implication on longevity risk hedging," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 376-394.
    13. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    14. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    15. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    16. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    17. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    18. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    19. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    20. D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.03396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.