Universal robust regression via maximum mean discrepancy
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
- Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
- Koller, Manuel & Stahel, Werner A., 2011. "Sharpening Wald-type inference in robust regression for small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2504-2515, August.
- M Gerber & R Douc, 2022. "A global stochastic optimization particle filter algorithm [Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization]," Biometrika, Biometrika Trust, vol. 109(4), pages 937-955.
- Lecué, Guillaume & Lerasle, Matthieu, 2019. "Learning from MOM’s principles: Le Cam’s approach," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4385-4410.
- Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
- Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Courbage, Christophe & Rey, Béatrice, 2012. "Priority setting in health care and higher order degree change in risk," Journal of Health Economics, Elsevier, vol. 31(3), pages 484-489.
- Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
- Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
- Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
- Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
- Rafaty, R. & Dolphin, G. & Pretis, F., 2020.
"Carbon pricing and the elasticity of CO2 emissions,"
Cambridge Working Papers in Economics
20116, Faculty of Economics, University of Cambridge.
- Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon pricing and the elasticity of CO2 emissions," Working Papers EPRG2035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon Pricing and the Elasticity of CO2 Emissions," Working Papers Series inetwp140, Institute for New Economic Thinking.
- Rafaty, Ryan & Dolphin, Geoffroy & Pretis, Felix, 2021. "Carbon Pricing and the Elasticity of CO2 Emissions," RFF Working Paper Series 21-33, Resources for the Future.
- Filzmoser, P. & Höppner, S. & Ortner, I. & Serneels, S. & Verdonck, T., 2020. "Cellwise robust M regression," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
- Peter Leoni & Pieter Segaert & Sven Serneels & Tim Verdonck, 2018. "Multivariate constrained robust M‐regression for shaping forward curves in electricity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1391-1406, November.
- T. Kirschstein & Steffen Liebscher, 2019. "Assessing the market values of soccer players – a robust analysis of data from German 1. and 2. Bundesliga," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1336-1349, May.
- Shanshan Qin & Zhenni Tan & Yuehua Wu, 2024. "On robust estimation of hidden semi-Markov regime-switching models," Annals of Operations Research, Springer, vol. 338(2), pages 1049-1081, July.
- Carsten Colombier, 2018.
"Population ageing in healthcare – a minor issue? Evidence from Switzerland,"
Applied Economics, Taylor & Francis Journals, vol. 50(15), pages 1746-1760, March.
- Colombier, Carsten, 2016. "Population aging in healthcare - a minor issue? Evidence from Switzerland," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 16-3, University of Cologne, FiFo Institute for Public Economics.
- Manos Matsaganis & Theodore Mitrakos & Panos Tsakloglou, 2008. "Modelling Household Expenditure on Health Care in Greece," Working Papers 68, Bank of Greece.
- Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
- Lee, Donghwan & Lee, Youngjo & Paik, Myunghee Cho & Kenward, Michael G., 2013. "Robust inference using hierarchical likelihood approach for heavy-tailed longitudinal outcomes with missing data: An alternative to inverse probability weighted generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 171-179.
- Andreea N. Kiss & Pamela S. Barr, 2015. "New venture strategic adaptation: The interplay of belief structures and industry context," Strategic Management Journal, Wiley Blackwell, vol. 36(8), pages 1245-1263, August.
- Eran Mick & Alexandra Tsitsiklis & Natasha Spottiswoode & Saharai Caldera & Paula Hayakawa Serpa & Angela M. Detweiler & Norma Neff & Angela Oliveira Pisco & Lucy M. Li & Hanna Retallack & Kalani Ratn, 2022. "Upper airway gene expression shows a more robust adaptive immune response to SARS-CoV-2 in children," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Abolhassani, Amir & James Harner, E. & Jaridi, Majid, 2019. "Empirical analysis of productivity enhancement strategies in the North American automotive industry," International Journal of Production Economics, Elsevier, vol. 208(C), pages 140-159.
More about this item
Keywords
Some key words: Maximum mean discrepancy; Minimum distance estimator; Robust regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:71-92.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.