IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i1p71-92..html
   My bibliography  Save this article

Universal robust regression via maximum mean discrepancy

Author

Listed:
  • P Alquier
  • M Gerber

Abstract

Many modern datasets are collected automatically and are thus easily contaminated by outliers. This has led to a renewed interest in robust estimation, including new notions of robustness such as robustness to adversarial contamination of the data. However, most robust estimation methods are designed for a specific model. Notably, many methods were proposed recently to obtain robust estimators in linear models, or generalized linear models, and a few were developed for very specific settings, for example beta regression or sample selection models. In this paper we develop a new approach for robust estimation in arbitrary regression models, based on maximum mean discrepancy minimization. We build two estimators that are both proven to be robust to Huber-type contamination. For one of them, we obtain a non-asymptotic error bound and show that it is also robust to adversarial contamination, but this estimator is computationally more expensive to use in practice than the other one. As a by-product of our theoretical analysis of the proposed estimators, we derive new results on kernel conditional mean embedding of distributions that are of independent interest.

Suggested Citation

  • P Alquier & M Gerber, 2024. "Universal robust regression via maximum mean discrepancy," Biometrika, Biometrika Trust, vol. 111(1), pages 71-92.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:71-92.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
    2. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    3. Lecué, Guillaume & Lerasle, Matthieu, 2019. "Learning from MOM’s principles: Le Cam’s approach," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4385-4410.
    4. Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
    5. Koller, Manuel & Stahel, Werner A., 2011. "Sharpening Wald-type inference in robust regression for small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2504-2515, August.
    6. M Gerber & R Douc, 2022. "A global stochastic optimization particle filter algorithm [Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization]," Biometrika, Biometrika Trust, vol. 109(4), pages 937-955.
    7. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    2. Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
    3. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    4. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    5. Courbage, Christophe & Rey, Béatrice, 2012. "Priority setting in health care and higher order degree change in risk," Journal of Health Economics, Elsevier, vol. 31(3), pages 484-489.
    6. Tahereh Dehdarirad & Kalle Karlsson, 2021. "News media attention in Climate Action: latent topics and open access," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8109-8128, September.
    7. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    8. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    9. Sean Dougherty & Pietrangelo Biase, 2021. "Who absorbs the shock? An analysis of the fiscal impact of the COVID-19 crisis on different levels of government," International Economics and Economic Policy, Springer, vol. 18(3), pages 517-540, July.
    10. Charles Ackah & Holger Görg & Aoife Hanley & Cecilia Hornok, 2024. "Africa’s businesswomen – underfunded or underperforming?," Small Business Economics, Springer, vol. 62(3), pages 1051-1074, March.
    11. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    12. Miron, Julien & Poilane, Benjamin & Cantoni, Eva, 2022. "Robust polytomous logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    13. Krantz, Sebastian, 2024. "Patterns of Global and Regional Integration in the East African Community," Kiel Working Papers 2245, Kiel Institute for the World Economy (IfW Kiel), revised 2024.
    14. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    15. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    16. Shi, Jianhong & Chen, Kun & Song, Weixing, 2014. "Robust errors-in-variables linear regression via Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 113-120.
    17. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    18. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    19. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    20. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:71-92.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.