IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i4p920-931.html
   My bibliography  Save this article

Robust inference in the negative binomial regression model with an application to falls data

Author

Listed:
  • William H. Aeberhard
  • Eva Cantoni
  • Stephane Heritier

Abstract

No abstract is available for this item.

Suggested Citation

  • William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:920-931
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12212
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    2. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    2. P Alquier & M Gerber, 2024. "Universal robust regression via maximum mean discrepancy," Biometrika, Biometrika Trust, vol. 111(1), pages 71-92.
    3. Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
    4. Hanan Elsaied & Roland Fried, 2021. "On robust estimation of negative binomial INARCH models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 137-158, August.
    5. Xie, Fang & Xiao, Zhijie, 2020. "Consistency of ℓ1 penalized negative binomial regressions," Statistics & Probability Letters, Elsevier, vol. 165(C).
    6. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    7. Peter Congdon, 2017. "Quantile regression for overdispersed count data: a hierarchical method," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    8. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    9. Konstantin Klemmer & Tobias Brandt & Stephen Jarvis, 2018. "Isolating the effect of cycling on local business environments in London," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Robust tests in generalized linear models with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 80-97.
    2. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 209-226.
    3. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    4. Courbage, Christophe & Rey, Béatrice, 2012. "Priority setting in health care and higher order degree change in risk," Journal of Health Economics, Elsevier, vol. 31(3), pages 484-489.
    5. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    6. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    7. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    8. Miron, Julien & Poilane, Benjamin & Cantoni, Eva, 2022. "Robust polytomous logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    9. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    10. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    11. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    12. Gagnon, Philippe & Wang, Yuxi, 2024. "Robust heavy-tailed versions of generalized linear models with applications in actuarial science," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    13. Carsten Colombier, 2018. "Population ageing in healthcare – a minor issue? Evidence from Switzerland," Applied Economics, Taylor & Francis Journals, vol. 50(15), pages 1746-1760, March.
    14. Manos Matsaganis & Theodore Mitrakos & Panos Tsakloglou, 2008. "Modelling Household Expenditure on Health Care in Greece," Working Papers 68, Bank of Greece.
    15. Vincenzo Verardi & Marjorie Gassner & Darwin Ugarte Ontiveros, 2012. "Robustness for Dummies," Working Papers ECARES ECARES 2012-015, ULB -- Universite Libre de Bruxelles.
    16. Alexander A. Aduenko & Anastasia P. Motrenko & Vadim V. Strijov, 2018. "Object selection in credit scoring using covariance matrix of parameters estimations," Annals of Operations Research, Springer, vol. 260(1), pages 3-21, January.
    17. Cizek, P., 2005. "Trimmed Likelihood-based Estimation in Binary Regression Models," Other publications TiSEM 8b789cab-97b8-451f-b37c-9, Tilburg University, School of Economics and Management.
    18. Lee, Donghwan & Lee, Youngjo & Paik, Myunghee Cho & Kenward, Michael G., 2013. "Robust inference using hierarchical likelihood approach for heavy-tailed longitudinal outcomes with missing data: An alternative to inverse probability weighted generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 171-179.
    19. Flores, Gabriela & Ir, Por & Men, Chean R. & O’Donnell, Owen & van Doorslaer, Eddy, 2013. "Financial protection of patients through compensation of providers: The impact of Health Equity Funds in Cambodia," Journal of Health Economics, Elsevier, vol. 32(6), pages 1180-1193.
    20. Kelly, Mark & Kuhn, Michael, 2022. "Congestion in a public health service: A macro approach," Journal of Macroeconomics, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:920-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.