IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v147y2020ics0167947320300359.html
   My bibliography  Save this article

Cellwise robust M regression

Author

Listed:
  • Filzmoser, P.
  • Höppner, S.
  • Ortner, I.
  • Serneels, S.
  • Verdonck, T.

Abstract

The cellwise robust M regression estimator is introduced as the first estimator of its kind that intrinsically yields both a map of cellwise outliers consistent with the linear model, and a vector of regression coefficients that is robust against vertical outliers and leverage points. As a by-product, the method yields a weighted and imputed data set that contains estimates of what the values in cellwise outliers would need to amount to if they had fit the model. The method is illustrated to be equally robust as its casewise counterpart, MM regression. The cellwise regression method discards less information than any casewise robust estimator. Therefore, predictive power can be expected to be at least as good as casewise alternatives. These results are corroborated in a simulation study. Moreover, while the simulations show that predictive performance is at least on par with casewise methods if not better, an application to a data set consisting of compositions of Swiss nutrients, shows that in individual cases, CRM can achieve a much higher predictive accuracy compared to MM regression.

Suggested Citation

  • Filzmoser, P. & Höppner, S. & Ortner, I. & Serneels, S. & Verdonck, T., 2020. "Cellwise robust M regression," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:csdana:v:147:y:2020:i:c:s0167947320300359
    DOI: 10.1016/j.csda.2020.106944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300359
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012. "A comparison of algorithms for the multivariate L 1 -median," Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
    2. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    3. Koller, Manuel & Stahel, Werner A., 2011. "Sharpening Wald-type inference in robust regression for small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2504-2515, August.
    4. Peter Leoni & Pieter Segaert & Sven Serneels & Tim Verdonck, 2018. "Multivariate constrained robust M‐regression for shaping forward curves in electricity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1391-1406, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    2. Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    2. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    3. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    4. Tahereh Dehdarirad & Kalle Karlsson, 2021. "News media attention in Climate Action: latent topics and open access," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8109-8128, September.
    5. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    6. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    7. Sean Dougherty & Pietrangelo Biase, 2021. "Who absorbs the shock? An analysis of the fiscal impact of the COVID-19 crisis on different levels of government," International Economics and Economic Policy, Springer, vol. 18(3), pages 517-540, July.
    8. Charles Ackah & Holger Görg & Aoife Hanley & Cecilia Hornok, 2024. "Africa’s businesswomen – underfunded or underperforming?," Small Business Economics, Springer, vol. 62(3), pages 1051-1074, March.
    9. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    10. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    11. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    12. Lorenzo Camponovo & Taisuke Otsu, 2012. "Breakdown point theory for implied probability bootstrap," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 32-55, February.
    13. Krantz, Sebastian, 2024. "Patterns of Global and Regional Integration in the East African Community," Kiel Working Papers 2245, Kiel Institute for the World Economy (IfW Kiel), revised 2024.
    14. Lorenzo Camponovo & Taisuke Otsu, 2015. "Robustness of Bootstrap in Instrumental Variable Regression," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
    15. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    16. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    17. Alfons, Andreas & Croux, Christophe & Gelper, Sarah, 2016. "Robust groupwise least angle regression," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 421-435.
    18. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    19. Angela Calvo & Christian Preti & Maria Caria & Roberto Deboli, 2019. "Vibration and Noise Transmitted by Agricultural Backpack Powered Machines Critically Examined Using the Current Standards," IJERPH, MDPI, vol. 16(12), pages 1-20, June.
    20. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    21. Peter Leoni & Pieter Segaert & Sven Serneels & Tim Verdonck, 2018. "Multivariate constrained robust M‐regression for shaping forward curves in electricity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1391-1406, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:147:y:2020:i:c:s0167947320300359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.