IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v78y2016i4p805-827.html
   My bibliography  Save this article

Robust inference in sample selection models

Author

Listed:
  • Mikhail Zhelonkin
  • Marc G. Genton
  • Elvezio Ronchetti

Abstract

No abstract is available for this item.

Suggested Citation

  • Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
  • Handle: RePEc:bla:jorssb:v:78:y:2016:i:4:p:805-827
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12136
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelo Melino, 1982. "Testing for Sample Selection Bias," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(1), pages 151-153.
    2. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    3. Paarsch, Harry J., 1984. "A Monte Carlo comparison of estimators for censored regression models," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 197-213.
    4. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    5. Gabriel Montes-Rojas, 2011. "Robust Misspecification Tests for the Heckman's Two-Step Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 154-172.
    6. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    7. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    8. Toomet, Ott & Henningsen, Arne, 2008. "Sample Selection Models in R: Package sampleSelection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i07).
    9. Peracchi, Franco, 1990. "Bounded-influence estimators for the tobit model," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 107-126.
    10. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    11. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    12. Duncan, Gregory M., 1987. "A simplified approach to M-estimation with application to two-stage estimators," Journal of Econometrics, Elsevier, vol. 34(3), pages 373-389, March.
    13. Siu Fai Leung & Shihti Yu, 2000. "Collinearity and Two-Step Estimation of Sample Selection Models: Problems, Origins, and Remedies," Computational Economics, Springer;Society for Computational Economics, vol. 15(3), pages 173-199, June.
    14. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    15. Marra, Giampiero & Radice, Rosalba, 2013. "Estimation of a regression spline sample selection model," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 158-173.
    16. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    17. Ma, Yanyuan & Genton, Marc G. & Tsiatis, Anastasios A., 2005. "Locally Efficient Semiparametric Estimators for Generalized Skew-Elliptical Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 980-989, September.
    18. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    19. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    20. Nelson, Forrest D., 1984. "Efficiency of the two-step estimator for models with endogenous sample selection," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 181-196.
    21. Yanyuan Ma & Mijeong Kim & Marc G. Genton, 2013. "Semiparametric Efficient and Robust Estimation of an Unknown Symmetric Population Under Arbitrary Sample Selection Bias," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1090-1104, September.
    22. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    23. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    24. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    25. Martin Huber & Blaise Melly, 2015. "A Test of the Conditional Independence Assumption in Sample Selection Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1144-1168, November.
    26. Zuehlke, Thomas W & Zeman, Allen R, 1991. "A Comparison of Two-Stage Estimators of Censored Regression Models," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 185-188, February.
    27. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    28. Greene, William H, 1981. "Sample Selection Bias as a Specification Error: Comment," Econometrica, Econometric Society, vol. 49(3), pages 795-798, May.
    29. Zhelonkin, Mikhail & Genton, Marc G. & Ronchetti, Elvezio, 2012. "On the robustness of two-stage estimators," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 726-732.
    30. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    31. Vella, F, 1992. "Simple Tests for Sample Selection Bias in Censored and Discrete Choice Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(4), pages 413-421, Oct.-Dec..
    32. Yulia V. Marchenko & Marc G. Genton, 2012. "A Heckman Selection- t Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 304-317, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adelchi Azzalini & Hyoung-Moon Kim & Hea-Jung Kim, 2019. "Sample selection models for discrete and other non-Gaussian response variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 27-56, March.
    2. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    3. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    4. Zhao, Jun & Kim, Hea-Jung & Kim, Hyoung-Moon, 2020. "New EM-type algorithms for the Heckman selection model," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
    5. Schumann, Martin & Tripathi, Gautam, 2018. "Convexity of probit weights," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 81-85.
    6. P Alquier & M Gerber, 2024. "Universal robust regression via maximum mean discrepancy," Biometrika, Biometrika Trust, vol. 111(1), pages 71-92.
    7. Emmanuel O. Ogundimu, 2022. "Regularization and variable selection in Heckman selection model," Statistical Papers, Springer, vol. 63(2), pages 421-439, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    2. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    3. Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A Sample Selection Model with Skew-normal Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 172-190, March.
    4. Wiemann, Paul F.V. & Klein, Nadja & Kneib, Thomas, 2022. "Correcting for sample selection bias in Bayesian distributional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Marra, Giampiero & Radice, Rosalba, 2013. "Estimation of a regression spline sample selection model," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 158-173.
    6. Karol Wyszynski & Giampiero Marra, 2018. "Sample selection models for count data in R," Computational Statistics, Springer, vol. 33(3), pages 1385-1412, September.
    7. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    8. Kossova, Elena & Potanin, Bogdan, 2018. "Heckman method and switching regression model multivariate generalization," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 114-143.
    9. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    10. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    11. Hasebe, Takuya & Vijverberg, Wim P., 2012. "A Flexible Sample Selection Model: A GTL-Copula Approach," IZA Discussion Papers 7003, Institute of Labor Economics (IZA).
    12. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    13. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    14. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    15. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    16. Takashi Yamagata & Chris Orme, 2005. "On Testing Sample Selection Bias Under the Multicollinearity Problem," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 467-481.
    17. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    18. Dylan Brewer & Alyssa Carlson, 2024. "Addressing sample selection bias for machine learning methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 383-400, April.
    19. William Fonta & H. Ichoku & Jane Kabubo-Mariara, 2010. "The effect of protest zeros on estimates of willingness to pay in healthcare contingent valuation analysis," Applied Health Economics and Health Policy, Springer, vol. 8(4), pages 225-237, July.
    20. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:4:p:805-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.