IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i4p937-955..html
   My bibliography  Save this article

A global stochastic optimization particle filter algorithm
[Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization]

Author

Listed:
  • M Gerber
  • R Douc

Abstract

SummaryWe introduce a new online algorithm for expected loglikelihood maximization in situations where the objective function is multimodal or has saddle points. The key element underpinning the algorithm is a probability distribution that concentrates on the target parameter value as the sample size increases and can be efficiently estimated by means of a standard particle filter algorithm. This distribution depends on a learning rate, such that the faster the learning rate the quicker the distribution concentrates on the desired element of the search space, but the less likely the algorithm is to escape from a local optimum of the objective function. In order to achieve a fast convergence rate with a slow learning rate, our algorithm exploits the acceleration property of averaging, which is well known from the stochastic gradient literature. Considering several challenging estimation problems, our numerical experiments show that with high probability, the algorithm successfully finds the highest mode of the objective function and converges to the global maximizer at the optimal rate. While the focus of this work is expected loglikelihood maximization, the proposed methodology and its theory apply more generally to optimization of a function defined through an expectation.

Suggested Citation

  • M Gerber & R Douc, 2022. "A global stochastic optimization particle filter algorithm [Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization]," Biometrika, Biometrika Trust, vol. 109(4), pages 937-955.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:937-955.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab067
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P Alquier & M Gerber, 2024. "Universal robust regression via maximum mean discrepancy," Biometrika, Biometrika Trust, vol. 111(1), pages 71-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:937-955.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.