IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v7y2023i1d10.1038_s41562-022-01438-z.html
   My bibliography  Save this article

Genetic footprints of assortative mating in the Japanese population

Author

Listed:
  • Kenichi Yamamoto

    (Osaka University Graduate School of Medicine
    Osaka University Graduate School of Medicine
    Osaka University)

  • Kyuto Sonehara

    (Osaka University Graduate School of Medicine
    Osaka University)

  • Shinichi Namba

    (Osaka University Graduate School of Medicine)

  • Takahiro Konuma

    (Osaka University Graduate School of Medicine)

  • Hironori Masuko

    (University of Tsukuba)

  • Satoru Miyawaki

    (The University of Tokyo)

  • Yoichiro Kamatani

    (The University of Tokyo)

  • Nobuyuki Hizawa

    (University of Tsukuba)

  • Keiichi Ozono

    (Osaka University Graduate School of Medicine)

  • Loic Yengo

    (The University of Queensland)

  • Yukinori Okada

    (Osaka University Graduate School of Medicine
    Osaka University
    Osaka University
    RIKEN Center for Integrative Medical Sciences)

Abstract

Assortative mating (AM) is a pattern characterized by phenotypic similarities between mating partners. Detecting the evidence of AM has been challenging due to the lack of large-scale datasets that include phenotypic data on both partners, especially in populations of non-European ancestries. Gametic phase disequilibrium between trait-associated alleles is a signature of parental AM on a polygenic trait, which can be detected even without partner data. Here, using polygenic scores for 81 traits in the Japanese population using BioBank Japan Project genome-wide association studies data (n = 172,270), we found evidence of AM on the liability to type 2 diabetes and coronary artery disease, as well as on dietary habits. In cross-population comparison using United Kingdom Biobank data (n = 337,139) we found shared but heterogeneous impacts of AM between populations.

Suggested Citation

  • Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023. "Genetic footprints of assortative mating in the Japanese population," Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
  • Handle: RePEc:nat:nathum:v:7:y:2023:i:1:d:10.1038_s41562-022-01438-z
    DOI: 10.1038/s41562-022-01438-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-022-01438-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-022-01438-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew R. Robinson & Aaron Kleinman & Mariaelisa Graff & Anna A. E. Vinkhuyzen & David Couper & Michael B. Miller & Wouter J. Peyrot & Abdel Abdellaoui & Brendan P. Zietsch & Ilja M. Nolte & Jana V. , 2017. "Genetic evidence of assortative mating in humans," Nature Human Behaviour, Nature, vol. 1(1), pages 1-13, January.
    2. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Nana Matoba & Masato Akiyama & Kazuyoshi Ishigaki & Masahiro Kanai & Atsushi Takahashi & Yukihide Momozawa & Shiro Ikegawa & Masashi Ikeda & Nakao Iwata & Makoto Hirata & Koichi Matsuda & Michiaki Kub, 2019. "GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture," Nature Human Behaviour, Nature, vol. 3(5), pages 471-477, May.
    4. Oliver Pain & Kylie P Glanville & Saskia P Hagenaars & Saskia Selzam & Anna E Fürtjes & Héléna A Gaspar & Jonathan R I Coleman & Kaili Rimfeld & Gerome Breen & Robert Plomin & Lasse Folkersen & Cathry, 2021. "Evaluation of polygenic prediction methodology within a reference-standardized framework," PLOS Genetics, Public Library of Science, vol. 17(5), pages 1-22, May.
    5. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    6. Saori Sakaue & Jun Hirata & Masahiro Kanai & Ken Suzuki & Masato Akiyama & Chun Lai Too & Thurayya Arayssi & Mohammed Hammoudeh & Samar Al Emadi & Basel K. Masri & Hussein Halabi & Humeira Badsha & Im, 2020. "Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Yukinori Okada & Yukihide Momozawa & Saori Sakaue & Masahiro Kanai & Kazuyoshi Ishigaki & Masato Akiyama & Toshihiro Kishikawa & Yasumichi Arai & Takashi Sasaki & Kenjiro Kosaki & Makoto Suematsu & Ko, 2018. "Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Nana Matoba & Masato Akiyama & Kazuyoshi Ishigaki & Masahiro Kanai & Atsushi Takahashi & Yukihide Momozawa & Shiro Ikegawa & Masashi Ikeda & Nakao Iwata & Makoto Hirata & Koichi Matsuda & Yoshinori Mu, 2020. "GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits," Nature Human Behaviour, Nature, vol. 4(3), pages 308-316, March.
    9. Laurence J. Howe & Daniel J. Lawson & Neil M. Davies & Beate St. Pourcain & Sarah J. Lewis & George Davey Smith & Gibran Hemani, 2019. "Genetic evidence for assortative mating on alcohol consumption in the UK Biobank," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Saori Sakaue & Etsuro Yamaguchi & Yoshikazu Inoue & Meiko Takahashi & Jun Hirata & Ken Suzuki & Satoru Ito & Toru Arai & Masaki Hirose & Yoshinori Tanino & Takefumi Nikaido & Toshio Ichiwata & Shinya , 2021. "Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    11. Ronnie Sebro & Gina M Peloso & Josée Dupuis & Neil J Risch, 2017. "Structured mating: Patterns and implications," PLOS Genetics, Public Library of Science, vol. 13(4), pages 1-22, April.
    12. Jong-Yi Wang & Chiu-Shong Liu & Chi-Hsuan Lung & Ya-Tun Yang & Ming-Hung Lin, 2017. "Investigating spousal concordance of diabetes through statistical analysis and data mining," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    13. Masato Akiyama & Kazuyoshi Ishigaki & Saori Sakaue & Yukihide Momozawa & Momoko Horikoshi & Makoto Hirata & Koichi Matsuda & Shiro Ikegawa & Atsushi Takahashi & Masahiro Kanai & Sadao Suzuki & Daisuke, 2019. "Characterizing rare and low-frequency height-associated variants in the Japanese population," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    14. Loic Yengo & Matthew R. Robinson & Matthew C. Keller & Kathryn E. Kemper & Yuanhao Yang & Maciej Trzaskowski & Jacob Gratten & Patrick Turley & David Cesarini & Daniel J. Benjamin & Naomi R. Wray & Mi, 2018. "Imprint of assortative mating on the human genome," Nature Human Behaviour, Nature, vol. 2(12), pages 948-954, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenichi Yamamoto & Shinichi Namba & Kyuto Sonehara & Ken Suzuki & Saori Sakaue & Niall P. Cooke & Shinichi Higashiue & Shuzo Kobayashi & Hisaaki Afuso & Kosho Matsuura & Yojiro Mitsumoto & Yasuhiko Fu, 2024. "Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenichi Yamamoto & Shinichi Namba & Kyuto Sonehara & Ken Suzuki & Saori Sakaue & Niall P. Cooke & Shinichi Higashiue & Shuzo Kobayashi & Hisaaki Afuso & Kosho Matsuura & Yojiro Mitsumoto & Yasuhiko Fu, 2024. "Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jennifer Sjaarda & Zoltán Kutalik, 2023. "Partner choice, confounding and trait convergence all contribute to phenotypic partner similarity," Nature Human Behaviour, Nature, vol. 7(5), pages 776-789, May.
    3. Go Sato & Yuya Shirai & Shinichi Namba & Ryuya Edahiro & Kyuto Sonehara & Tsuyoshi Hata & Mamoru Uemura & Koichi Matsuda & Yuichiro Doki & Hidetoshi Eguchi & Yukinori Okada, 2023. "Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Kyuto Sonehara & Yui Kimura & Yoshiko Nakano & Tatsuya Ozawa & Meiko Takahashi & Ken Suzuki & Takashi Fujii & Yuko Matsushita & Arata Tomiyama & Toshihiro Kishikawa & Kenichi Yamamoto & Tatsuhiko Nait, 2022. "A common deletion at BAK1 reduces enhancer activity and confers risk of intracranial germ cell tumors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. James P. Pirruccello & Paolo Achille & Seung Hoan Choi & Joel T. Rämö & Shaan Khurshid & Mahan Nekoui & Sean J. Jurgens & Victor Nauffal & Shinwan Kany & Kenney Ng & Samuel F. Friedman & Puneet Batra , 2024. "Deep learning of left atrial structure and function provides link to atrial fibrillation risk," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Injeong Shim & Hiroyuki Kuwahara & NingNing Chen & Mais O. Hashem & Lama AlAbdi & Mohamed Abouelhoda & Hong-Hee Won & Pradeep Natarajan & Patrick T. Ellinor & Amit V. Khera & Xin Gao & Fowzan S. Alkur, 2023. "Clinical utility of polygenic scores for cardiometabolic disease in Arabs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    14. Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022. "The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Abdel Abdellaoui & Oana Borcan & Pierre-André Chiappori & David Hugh-Jones, 2022. "Trading Social Status for Genetics in Marriage Markets: Evidence from UK Biobank," Working Papers 2022-018, Human Capital and Economic Opportunity Working Group.
    16. Hans Kippersluis & Pietro Biroli & Rita Dias Pereira & Titus J. Galama & Stephanie Hinke & S. Fleur W. Meddens & Dilnoza Muslimova & Eric A. W. Slob & Ronald Vlaming & Cornelius A. Rietveld, 2023. "Overcoming attenuation bias in regressions using polygenic indices," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Chamlee Cho & Beomsu Kim & Dan Say Kim & Mi Yeong Hwang & Injeong Shim & Minku Song & Yeong Chan Lee & Sang-Hyuk Jung & Sung Kweon Cho & Woong-Yang Park & Woojae Myung & Bong-Jo Kim & Ron Do & Hyon K., 2024. "Large-scale cross-ancestry genome-wide meta-analysis of serum urate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Fartein Ask Torvik & Espen Moen Eilertsen & Laurie J. Hannigan & Rosa Cheesman & Laurence J. Howe & Per Magnus & Ted Reichborn-Kjennerud & Ole A. Andreassen & Pål R. Njølstad & Alexandra Havdahl & Eiv, 2022. "Modeling assortative mating and genetic similarities between partners, siblings, and in-laws," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    20. Gengjie Jia & Xue Zhong & Hae Kyung Im & Nathan Schoettler & Milton Pividori & D. Kyle Hogarth & Anne I. Sperling & Steven R. White & Edward T. Naureckas & Christopher S. Lyttle & Chikashi Terao & Yoi, 2022. "Discerning asthma endotypes through comorbidity mapping," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:7:y:2023:i:1:d:10.1038_s41562-022-01438-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.