Author
Listed:
- Ronnie Sebro
- Gina M Peloso
- Josée Dupuis
- Neil J Risch
Abstract
Genetic similarity of spouses can reflect factors influencing mate choice, such as physical/behavioral characteristics, and patterns of social endogamy. Spouse correlations for both genetic ancestry and measured traits may impact genotype distributions (Hardy Weinberg and linkage equilibrium), and therefore genetic association studies. Here we evaluate white spouse-pairs from the Framingham Heart Study (FHS) original and offspring cohorts (N = 124 and 755, respectively) to explore spousal genetic similarity and its consequences. Two principal components (PCs) of the genome-wide association (GWA) data were identified, with the first (PC1) delineating clines of Northern/Western to Southern European ancestry and the second (PC2) delineating clines of Ashkenazi Jewish ancestry. In the original (older) cohort, there was a striking positive correlation between the spouses in PC1 (r = 0.73, P = 3x10-22) and also for PC2 (r = 0.80, P = 7x10-29). In the offspring cohort, the spouse correlations were lower but still highly significant for PC1 (r = 0.38, P = 7x10-28) and for PC2 (r = 0.45, P = 2x10-39). We observed significant Hardy-Weinberg disequilibrium for single nucleotide polymorphisms (SNPs) loading heavily on PC1 and PC2 across 3 generations, and also significant linkage disequilibrium between unlinked SNPs; both decreased with time, consistent with reduced ancestral endogamy over generations and congruent with theoretical calculations. Ignoring ancestry, estimates of spouse kinship have a mean significantly greater than 0, and more so in the earlier generations. Adjusting kinship estimates for genetic ancestry through the use of PCs led to a mean spouse kinship not different from 0, demonstrating that spouse genetic similarity could be fully attributed to ancestral assortative mating. These findings also have significance for studies of heritability that are based on distantly related individuals (kinship less than 0.05), as we also demonstrate the poor correlation of kinship estimates in that range when ancestry is or is not taken into account.Author summary: We analyzed three generations of whites from the Framingham Heart Study (FHS) using genome-wide genotype data to characterize their genetic ancestry. By examination of spouse-pairs, we observed that individuals of Northern/Western European, Southern European and Ashkenazi ancestry preferentially chose spouses of the same ancestry, however, the degree of endogamy decreased in each successive generation, especially between Northern/Western and Southern Europeans. We then showed that the mating pattern results in Hardy-Weinberg disequilibrium (HWD) at ancestrally-informative SNPs, and also results in linkage disequilibrium (LD) between unlinked loci. The HWD and LD decrease as theoretically expected with the decrease in endogamy noted in each generation. In the FHS sample, spouse genetic similarity can be explained by ancestry-related assortative mating.
Suggested Citation
Ronnie Sebro & Gina M Peloso & Josée Dupuis & Neil J Risch, 2017.
"Structured mating: Patterns and implications,"
PLOS Genetics, Public Library of Science, vol. 13(4), pages 1-22, April.
Handle:
RePEc:plo:pgen00:1006655
DOI: 10.1371/journal.pgen.1006655
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023.
"Genetic footprints of assortative mating in the Japanese population,"
Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
- Jennifer Sjaarda & Zoltán Kutalik, 2023.
"Partner choice, confounding and trait convergence all contribute to phenotypic partner similarity,"
Nature Human Behaviour, Nature, vol. 7(5), pages 776-789, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.