IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33628-8.html
   My bibliography  Save this article

Discerning asthma endotypes through comorbidity mapping

Author

Listed:
  • Gengjie Jia

    (University of Chicago
    University of Chicago
    Chinese Academy of Agricultural Sciences)

  • Xue Zhong

    (Vanderbilt University Medical Center)

  • Hae Kyung Im

    (University of Chicago
    University of Chicago)

  • Nathan Schoettler

    (University of Chicago)

  • Milton Pividori

    (University of Chicago
    University of Pennsylvania)

  • D. Kyle Hogarth

    (University of Chicago)

  • Anne I. Sperling

    (University of Chicago)

  • Steven R. White

    (University of Chicago)

  • Edward T. Naureckas

    (University of Chicago)

  • Christopher S. Lyttle

    (University of Chicago)

  • Chikashi Terao

    (RIKEN Center for Integrative Medical Sciences
    Clinical Research Center, Shizuoka General Hospital
    University of Shizuoka)

  • Yoichiro Kamatani

    (RIKEN Center for Integrative Medical Sciences
    The University of Tokyo)

  • Masato Akiyama

    (RIKEN Center for Integrative Medical Sciences
    Kyushu University)

  • Koichi Matsuda

    (The University of Tokyo)

  • Michiaki Kubo

    (RIKEN Center for Integrative Medical Sciences)

  • Nancy J. Cox

    (Vanderbilt University Medical Center)

  • Carole Ober

    (University of Chicago)

  • Andrey Rzhetsky

    (University of Chicago
    University of Chicago
    University of Chicago
    University of Chicago)

  • Julian Solway

    (University of Chicago)

Abstract

Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.

Suggested Citation

  • Gengjie Jia & Xue Zhong & Hae Kyung Im & Nathan Schoettler & Milton Pividori & D. Kyle Hogarth & Anne I. Sperling & Steven R. White & Edward T. Naureckas & Christopher S. Lyttle & Chikashi Terao & Yoi, 2022. "Discerning asthma endotypes through comorbidity mapping," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33628-8
    DOI: 10.1038/s41467-022-33628-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33628-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33628-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    2. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    3. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    4. Gengjie Jia & Yu Li & Hanxin Zhang & Ishanu Chattopadhyay & Anders Boeck Jensen & David R. Blair & Lea Davis & Peter N. Robinson & Torsten Dahlén & Søren Brunak & Mikael Benson & Gustaf Edgren & Nancy, 2019. "Estimating heritability and genetic correlations from large health datasets in the absence of genetic data," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Masato Akiyama & Kazuyoshi Ishigaki & Saori Sakaue & Yukihide Momozawa & Momoko Horikoshi & Makoto Hirata & Koichi Matsuda & Shiro Ikegawa & Atsushi Takahashi & Masahiro Kanai & Sadao Suzuki & Daisuke, 2019. "Characterizing rare and low-frequency height-associated variants in the Japanese population," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Noah Zaitlen & Sara Lindström & Bogdan Pasaniuc & Marilyn Cornelis & Giulio Genovese & Samuela Pollack & Anne Barton & Heike Bickeböller & Donald W Bowden & Steve Eyre & Barry I Freedman & David J Fri, 2012. "Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies," PLOS Genetics, Public Library of Science, vol. 8(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samatar, Elmi Hassan, 2023. "Assessing the determinants of agricultural productivity in Somalia: An application of an ARDL model," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 13(03), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Go Sato & Yuya Shirai & Shinichi Namba & Ryuya Edahiro & Kyuto Sonehara & Tsuyoshi Hata & Mamoru Uemura & Koichi Matsuda & Yuichiro Doki & Hidetoshi Eguchi & Yukinori Okada, 2023. "Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Zhiqiang Sha & Dick Schijven & Amaia Carrion-Castillo & Marc Joliot & Bernard Mazoyer & Simon E. Fisher & Fabrice Crivello & Clyde Francks, 2021. "The genetic architecture of structural left–right asymmetry of the human brain," Nature Human Behaviour, Nature, vol. 5(9), pages 1226-1239, September.
    8. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Seppe Goovaerts & Hanne Hoskens & Ryan J. Eller & Noah Herrick & Anthony M. Musolf & Cristina M. Justice & Meng Yuan & Sahin Naqvi & Myoung Keun Lee & Dirk Vandermeulen & Heather L. Szabo-Rogers & Pau, 2023. "Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Saredo Said & Raha Pazoki & Ville Karhunen & Urmo Võsa & Symen Ligthart & Barbara Bodinier & Fotios Koskeridis & Paul Welsh & Behrooz Z. Alizadeh & Daniel I. Chasman & Naveed Sattar & Marc Chadeau-Hya, 2022. "Genetic analysis of over half a million people characterises C-reactive protein loci," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Xiao-Yu He & Bang-Sheng Wu & Liu Yang & Yu Guo & Yue-Ting Deng & Ze-Yu Li & Chen-Jie Fei & Wei-Shi Liu & Yi-Jun Ge & Jujiao Kang & Jianfeng Feng & Wei Cheng & Qiang Dong & Jin-Tai Yu, 2024. "Genetic associations of protein-coding variants in venous thromboembolism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Waheed-Ul-Rahman Ahmed & Sam Kleeman & Michael Ng & Wei Wang & Adam Auton & Regent Lee & Ashok Handa & Krina T. Zondervan & Akira Wiberg & Dominic Furniss, 2022. "Genome-wide association analysis and replication in 810,625 individuals with varicose veins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Caibo Ning & Linyun Fan & Meng Jin & Wenji Wang & Zhiqiang Hu & Yimin Cai & Liangkai Chen & Zequn Lu & Ming Zhang & Can Chen & Yanmin Li & Fuwei Zhang & Wenzhuo Wang & Yizhuo Liu & Shuoni Chen & Yuan , 2023. "Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Alexander T. Williams & Jing Chen & Kayesha Coley & Chiara Batini & Abril Izquierdo & Richard Packer & Erik Abner & Stavroula Kanoni & David J. Shepherd & Robert C. Free & Edward J. Hollox & Nigel J. , 2023. "Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. E. P. Tissink & A. A. Shadrin & D. Meer & N. Parker & G. Hindley & D. Roelfs & O. Frei & C. C. Fan & M. Nagel & T. Nærland & M. Budisteanu & S. Djurovic & L. T. Westlye & M. P. Heuvel & D. Posthuma & , 2024. "Abundant pleiotropy across neuroimaging modalities identified through a multivariate genome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Arianna Landini & Irena Trbojević-Akmačić & Pau Navarro & Yakov A. Tsepilov & Sodbo Z. Sharapov & Frano Vučković & Ozren Polašek & Caroline Hayward & Tea Petrović & Marija Vilaj & Yurii S. Aulchenko &, 2022. "Genetic regulation of post-translational modification of two distinct proteins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Mathias Seviiri & Matthew H. Law & Jue-Sheng Ong & Puya Gharahkhani & Pierre Fontanillas & Catherine M. Olsen & David C. Whiteman & Stuart MacGregor, 2022. "A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33628-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.