IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26761-3.html
   My bibliography  Save this article

Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake

Author

Listed:
  • Magdalena Zimoń

    (University of Heidelberg/EMBL
    European Molecular Biological Laboratory)

  • Yunfeng Huang

    (Translational Biology, Biogen Inc)

  • Anthi Trasta

    (University of Heidelberg/EMBL
    European Molecular Biological Laboratory)

  • Aliaksandr Halavatyi

    (European Molecular Biological Laboratory)

  • Jimmy Z. Liu

    (Translational Biology, Biogen Inc)

  • Chia-Yen Chen

    (Translational Biology, Biogen Inc
    Mass General Hospital)

  • Peter Blattmann

    (University of Heidelberg/EMBL
    European Molecular Biological Laboratory
    Idorsia Pharmaceuticals Ltd)

  • Bernd Klaus

    (European Molecular Biological Laboratory)

  • Christopher D. Whelan

    (Translational Biology, Biogen Inc)

  • David Sexton

    (Translational Biology, Biogen Inc)

  • Sally John

    (Translational Biology, Biogen Inc)

  • Wolfgang Huber

    (European Molecular Biological Laboratory)

  • Ellen A. Tsai

    (Translational Biology, Biogen Inc)

  • Rainer Pepperkok

    (University of Heidelberg/EMBL
    European Molecular Biological Laboratory
    European Molecular Biological Laboratory)

  • Heiko Runz

    (University of Heidelberg/EMBL
    Translational Biology, Biogen Inc)

Abstract

Complex traits are characterized by multiple genes and variants acting simultaneously on a phenotype. However, studying the contribution of individual pairs of genes to complex traits has been challenging since human genetics necessitates very large population sizes, while findings from model systems do not always translate to humans. Here, we combine genetics with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs) and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS) genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating mutations in both, APOB and either PCSK9 or LPL (“human double knock-outs”) plasma lipid levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs and nominates putative drug target pairs for improved lipid-lowering combination therapies.

Suggested Citation

  • Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26761-3
    DOI: 10.1038/s41467-021-26761-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26761-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26761-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    4. Benjamin B. Sun & Joseph C. Maranville & James E. Peters & David Stacey & James R. Staley & James Blackshaw & Stephen Burgess & Tao Jiang & Ellie Paige & Praveen Surendran & Clare Oliver-Williams & Mi, 2018. "Genomic atlas of the human plasma proteome," Nature, Nature, vol. 558(7708), pages 73-79, June.
    5. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    6. Gibran Hemani & Joseph E. Powell & Huanwei Wang & Konstantin Shakhbazov & Harm-Jan Westra & Tonu Esko & Anjali K. Henders & Allan F. McRae & Nicholas G. Martin & Andres Metspalu & Lude Franke & Grant , 2021. "Phantom epistasis between unlinked loci," Nature, Nature, vol. 596(7871), pages 1-3, August.
    7. Adam E. Locke & Karyn Meltz Steinberg & Charleston W. K. Chiang & Susan K. Service & Aki S. Havulinna & Laurel Stell & Matti Pirinen & Haley J. Abel & Colby C. Chiang & Robert S. Fulton & Anne U. Jack, 2019. "Author Correction: Exome sequencing of Finnish isolates enhances rare-variant association power," Nature, Nature, vol. 575(7783), pages 4-4, November.
    8. Adam E. Locke & Karyn Meltz Steinberg & Charleston W. K. Chiang & Susan K. Service & Aki S. Havulinna & Laurel Stell & Matti Pirinen & Haley J. Abel & Colby C. Chiang & Robert S. Fulton & Anne U. Jack, 2019. "Exome sequencing of Finnish isolates enhances rare-variant association power," Nature, Nature, vol. 572(7769), pages 323-328, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Derek W. Brown & Liam D. Cato & Yajie Zhao & Satish K. Nandakumar & Erik L. Bao & Eugene J. Gardner & Aubrey K. Hubbard & Alexander DePaulis & Thomas Rehling & Lei Song & Kai Yu & Stephen J. Chanock &, 2023. "Shared and distinct genetic etiologies for different types of clonal hematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Qingbo S. Wang & Ryuya Edahiro & Ho Namkoong & Takanori Hasegawa & Yuya Shirai & Kyuto Sonehara & Hiromu Tanaka & Ho Lee & Ryunosuke Saiki & Takayoshi Hyugaji & Eigo Shimizu & Kotoe Katayama & Masahir, 2022. "The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022. "The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Maik Pietzner & Eleanor Wheeler & Julia Carrasco-Zanini & Nicola D. Kerrison & Erin Oerton & Mine Koprulu & Jian’an Luan & Aroon D. Hingorani & Steve A. Williams & Nicholas J. Wareham & Claudia Langen, 2021. "Synergistic insights into human health from aptamer- and antibody-based proteomic profiling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. David R. Blair & Thomas J. Hoffmann & Joseph T. Shieh, 2022. "Common genetic variation associated with Mendelian disease severity revealed through cryptic phenotype analysis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Marie C. Sadler & Chiara Auwerx & Kaido Lepik & Eleonora Porcu & Zoltán Kutalik, 2022. "Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Zhaotong Lin & Wei Pan, 2024. "A robust cis-Mendelian randomization method with application to drug target discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Shiyu Zhang & Zheng Wang & Yijing Wang & Yixiao Zhu & Qiao Zhou & Xingxing Jian & Guihu Zhao & Jian Qiu & Kun Xia & Beisha Tang & Julian Mutz & Jinchen Li & Bin Li, 2024. "A metabolomic profile of biological aging in 250,341 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Guanghao Qi & Surya B. Chhetri & Debashree Ray & Diptavo Dutta & Alexis Battle & Samsiddhi Bhattacharjee & Nilanjan Chatterjee, 2024. "Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Injeong Shim & Hiroyuki Kuwahara & NingNing Chen & Mais O. Hashem & Lama AlAbdi & Mohamed Abouelhoda & Hong-Hee Won & Pradeep Natarajan & Patrick T. Ellinor & Amit V. Khera & Xin Gao & Fowzan S. Alkur, 2023. "Clinical utility of polygenic scores for cardiometabolic disease in Arabs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26761-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.