IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-07999-w.html
   My bibliography  Save this article

Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming

Author

Listed:
  • Christopher J. Smith

    (University of Leeds)

  • Piers M. Forster

    (University of Leeds)

  • Myles Allen

    (Oxford University Centre for the Environment
    University of Oxford Department of Physics)

  • Jan Fuglestvedt

    (CICERO)

  • Richard J. Millar

    (Oxford University Centre for the Environment
    University of Exeter)

  • Joeri Rogelj

    (International Institute for Applied Systems Analysis (IIASA)
    Grantham Institute for Climate Change and the Environment, Imperial College
    Institute for Atmospheric and Climate Science, ETH Zurich)

  • Kirsten Zickfeld

    (Simon Fraser University)

Abstract

Committed warming describes how much future warming can be expected from historical emissions due to inertia in the climate system. It is usually defined in terms of the level of warming above the present for an abrupt halt of emissions. Owing to socioeconomic constraints, this situation is unlikely, so we focus on the committed warming from present-day fossil fuel assets. Here we show that if carbon-intensive infrastructure is phased out at the end of its design lifetime from the end of 2018, there is a 64% chance that peak global mean temperature rise remains below 1.5 °C. Delaying mitigation until 2030 considerably reduces the likelihood that 1.5 °C would be attainable even if the rate of fossil fuel retirement was accelerated. Although the challenges laid out by the Paris Agreement are daunting, we indicate 1.5 °C remains possible and is attainable with ambitious and immediate emission reduction across all sectors.

Suggested Citation

  • Christopher J. Smith & Piers M. Forster & Myles Allen & Jan Fuglestvedt & Richard J. Millar & Joeri Rogelj & Kirsten Zickfeld, 2019. "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07999-w
    DOI: 10.1038/s41467-018-07999-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07999-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07999-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    2. Janicke, Lauren & Nock, Destenie & Surana, Kavita & Jordaan, Sarah M., 2023. "Air pollution co-benefits from strengthening electric transmission and distribution systems," Energy, Elsevier, vol. 269(C).
    3. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.
    4. Joachim Peter Tilsted & Anders Bjørn, 2023. "Green frontrunner or indebted culprit? Assessing Denmark’s climate targets in light of fair contributions under the Paris Agreement," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    5. Zhou, Qiang & Liu, Yong & Qu, Shen, 2022. "Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    7. Kühne, Kjell & Bartsch, Nils & Tate, Ryan Driskell & Higson, Julia & Habet, André, 2022. "“Carbon Bombs” - Mapping key fossil fuel projects," Energy Policy, Elsevier, vol. 166(C).
    8. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07999-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.