IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43429-2.html
   My bibliography  Save this article

Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies

Author

Listed:
  • Sayedali Shetab Boushehri

    (German Research Center for Environmental Health
    German Research Center for Environmental Health
    Department of Mathematics
    Roche Innovation Center Munich)

  • Katharina Essig

    (Roche Innovation Center Munich)

  • Nikolaos-Kosmas Chlis

    (Roche Innovation Center Munich)

  • Sylvia Herter

    (Roche Pharma Research and Early Development (pRED))

  • Marina Bacac

    (Roche Pharma Research and Early Development (pRED))

  • Fabian J. Theis

    (German Research Center for Environmental Health
    Department of Mathematics)

  • Elke Glasmacher

    (Roche Innovation Center Munich)

  • Carsten Marr

    (German Research Center for Environmental Health
    German Research Center for Environmental Health)

  • Fabian Schmich

    (Roche Innovation Center Munich)

Abstract

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.

Suggested Citation

  • Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43429-2
    DOI: 10.1038/s41467-023-43429-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43429-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43429-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam N. R. Cartwright & Jeremy Griggs & Daniel M. Davis, 2014. "The immune synapse clears and excludes molecules above a size threshold," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    2. Philipp Eulenberg & Niklas Köhler & Thomas Blasi & Andrew Filby & Anne E. Carpenter & Paul Rees & Fabian J. Theis & F. Alexander Wolf, 2017. "Reconstructing cell cycle and disease progression using deep learning," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    3. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    4. Ju Yeon Lee & Hyun Tae Lee & Woori Shin & Jongseok Chae & Jaemo Choi & Sung Hyun Kim & Heejin Lim & Tae Won Heo & Kyeong Young Park & Yeon Ji Lee & Seong Eon Ryu & Ji Young Son & Jee Un Lee & Yong-Seo, 2016. "Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    5. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    7. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    11. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Matt C. J. Denton & Luke D. Smith & Wenhao Xu & Jodeci Pugsley & Amelia Toghill & Daniel R. Kattnig, 2024. "Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    14. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    16. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    17. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    18. Maren Schnieder, 2023. "Ebike Sharing vs. Bike Sharing: Demand Prediction Using Deep Neural Networks and Random Forests," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    19. Gabriele Orlando & Daniele Raimondi & Ramon Duran-Romaña & Yves Moreau & Joost Schymkowitz & Frederic Rousseau, 2022. "PyUUL provides an interface between biological structures and deep learning algorithms," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Hazal Colak Oz & Çiçek Güven & Gonzalo Nápoles, 2023. "School dropout prediction and feature importance exploration in Malawi using household panel data: machine learning approach," Journal of Computational Social Science, Springer, vol. 6(1), pages 245-287, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43429-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.