IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46150-w.html
   My bibliography  Save this article

Data leakage inflates prediction performance in connectome-based machine learning models

Author

Listed:
  • Matthew Rosenblatt

    (Yale University)

  • Link Tejavibulya

    (Yale University)

  • Rongtao Jiang

    (Yale School of Medicine)

  • Stephanie Noble

    (Yale School of Medicine
    Northeastern University
    Northeastern University)

  • Dustin Scheinost

    (Yale University
    Yale University
    Yale School of Medicine
    Yale School of Medicine)

Abstract

Predictive modeling is a central technique in neuroimaging to identify brain-behavior relationships and test their generalizability to unseen data. However, data leakage undermines the validity of predictive models by breaching the separation between training and test data. Leakage is always an incorrect practice but still pervasive in machine learning. Understanding its effects on neuroimaging predictive models can inform how leakage affects existing literature. Here, we investigate the effects of five forms of leakage–involving feature selection, covariate correction, and dependence between subjects–on functional and structural connectome-based machine learning models across four datasets and three phenotypes. Leakage via feature selection and repeated subjects drastically inflates prediction performance, whereas other forms of leakage have minor effects. Furthermore, small datasets exacerbate the effects of leakage. Overall, our results illustrate the variable effects of leakage and underscore the importance of avoiding data leakage to improve the validity and reproducibility of predictive modeling.

Suggested Citation

  • Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46150-w
    DOI: 10.1038/s41467-024-46150-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46150-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46150-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    2. Rotem Botvinik-Nezer & Felix Holzmeister & Colin F. Camerer & Anna Dreber & Juergen Huber & Magnus Johannesson & Michael Kirchler & Roni Iwanir & Jeanette A. Mumford & R. Alison Adcock & Paolo Avesani, 2020. "Variability in the analysis of a single neuroimaging dataset by many teams," Nature, Nature, vol. 582(7810), pages 84-88, June.
    3. Scott Marek & Brenden Tervo-Clemmens & Finnegan J. Calabro & David F. Montez & Benjamin P. Kay & Alexander S. Hatoum & Meghan Rose Donohue & William Foran & Ryland L. Miller & Timothy J. Hendrickson &, 2022. "Reproducible brain-wide association studies require thousands of individuals," Nature, Nature, vol. 603(7902), pages 654-660, March.
    4. Tamas Spisak & Ulrike Bingel & Tor D. Wager, 2023. "Multivariate BWAS can be replicable with moderate sample sizes," Nature, Nature, vol. 615(7951), pages 4-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquin Vespignani & Russell Smyth, 2024. "Artificial intelligence investments reduce risks to critical mineral supply," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rotem Botvinik-Nezer & Bogdan Petre & Marta Ceko & Martin A. Lindquist & Naomi P. Friedman & Tor D. Wager, 2024. "Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Zurrin, Riley & Wong, Samantha Tze Sum & Roes, Meighen M. & Percival, Chantal M. & Chinchani, Abhijit & Arreaza, Leo & Kusi, Mavis & Momeni, Ava & Rasheed, Maiya & Mo, Zhaoyi & Goghari, Vina M. & Wood, 2024. "Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence," Intelligence, Elsevier, vol. 103(C).
    4. Sadri, Arash, 2022. "The Ultimate Cause of the “Reproducibility Crisis”: Reductionist Statistics," MetaArXiv yxba5, Center for Open Science.
    5. Audrey C. Luo & Valerie J. Sydnor & Adam Pines & Bart Larsen & Aaron F. Alexander-Bloch & Matthew Cieslak & Sydney Covitz & Andrew A. Chen & Nathalia Bianchini Esper & Eric Feczko & Alexandre R. Franc, 2024. "Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Shile Qi & Jing Sui & Godfrey Pearlson & Juan Bustillo & Nora I. Perrone-Bizzozero & Peter Kochunov & Jessica A. Turner & Zening Fu & Wei Shao & Rongtao Jiang & Xiao Yang & Jingyu Liu & Yuhui Du & Jia, 2022. "Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    10. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    14. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    16. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Nick Huntington‐Klein & Andreu Arenas & Emily Beam & Marco Bertoni & Jeffrey R. Bloem & Pralhad Burli & Naibin Chen & Paul Grieco & Godwin Ekpe & Todd Pugatch & Martin Saavedra & Yaniv Stopnitzky, 2021. "The influence of hidden researcher decisions in applied microeconomics," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 944-960, July.
    18. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    19. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    20. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46150-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.