Author
Listed:
- Tongxin Wei
(Central South University)
- Jinzhu Zou
(Central South University)
- Xuefan Zhou
(Central South University)
- Miao Song
(Central South University)
- Yan Zhang
(Central South University)
- Cewen Nan
(Tsinghua University)
- Yuanhua Lin
(Tsinghua University)
- Dou Zhang
(Central South University)
Abstract
Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. Although high entropy relaxor ferroelectric exhibited enormous potential in functional materials, the chemical short-range order, which is a common phenomenon in high entropy alloys to modulate performances, have been paid less attention here. We design a chemical short-range order strategy to modulate polarization response under external electric field and achieve substantial enhancements of energy storage properties, i.e. an ultrahigh energy density of ~16.4 J/cm3 with markedly improved efficiency ~90% at an electric field of 85 kV/mm in Nb doped (Bi0.2Na0.2K0.2La0.2Sr0.2) TiO3 system. Atomic-scale scanning transmission electron microscopy observations show that Nb exhibits a chemical short-range order structure, with Nb enriched regions displaying ultrasmall polar nanoregions and more flexible polarization configurations, which is conducive to achieving high maximum polarization and low residual polarization. Moreover, refined grain size of ~0.25μm, suppressed oxygen vacancies and enhanced bandwidth contribute to a high breakdown field strength. These collective factors result in exceptionally high energy storage density and efficiency. This short-range order strategy is expected to enhance the functional performances in other high entropy relaxor ferroelectrics.
Suggested Citation
Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025.
"High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56181-6
DOI: 10.1038/s41467-025-56181-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56181-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.