IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36919-w.html
   My bibliography  Save this article

Heterovalent-doping-enabled atom-displacement fluctuation leads to ultrahigh energy-storage density in AgNbO3-based multilayer capacitors

Author

Listed:
  • Li-Feng Zhu

    (University of Science and Technology Beijing)

  • Shiqing Deng

    (University of Science and Technology Beijing)

  • Lei Zhao

    (Hebei University)

  • Gen Li

    (Tsinghua University)

  • Qi Wang

    (University of Science and Technology Beijing)

  • Linhai Li

    (University of Science and Technology Beijing)

  • Yongke Yan

    (Xi’an Jiaotong University)

  • He Qi

    (University of Science and Technology Beijing)

  • Bo-Ping Zhang

    (University of Science and Technology Beijing)

  • Jun Chen

    (University of Science and Technology Beijing)

  • Jing-Feng Li

    (Tsinghua University)

Abstract

Dielectric capacitors with high energy storage performance are highly desired for next-generation advanced high/pulsed power capacitors that demand miniaturization and integration. However, the poor energy-storage density that results from the low breakdown strength, has been the major challenge for practical applications of dielectric capacitors. Herein, we propose a heterovalent-doping-enabled atom-displacement fluctuation strategy for the design of low-atom-displacements regions in the antiferroelectric matrix to achieve the increase in breakdown strength and enhancement of the energy-storage density for AgNbO3-based multilayer capacitors. An ultrahigh breakdown strength ~1450 kV·cm−1 is realized in the Sm0.05Ag0.85Nb0.7Ta0.3O3 multilayer capacitors, especially with an ultrahigh Urec ~14 J·cm−3, excellent η ~ 85% and PD,max ~ 102.84 MW·cm−3, manifesting a breakthrough in the comprehensive energy storage performance for lead-free antiferroelectric capacitors. This work offers a good paradigm for improving the energy storage properties of antiferroelectric multilayer capacitors to meet the demanding requirements of advanced energy storage applications.

Suggested Citation

  • Li-Feng Zhu & Shiqing Deng & Lei Zhao & Gen Li & Qi Wang & Linhai Li & Yongke Yan & He Qi & Bo-Ping Zhang & Jun Chen & Jing-Feng Li, 2023. "Heterovalent-doping-enabled atom-displacement fluctuation leads to ultrahigh energy-storage density in AgNbO3-based multilayer capacitors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36919-w
    DOI: 10.1038/s41467-023-36919-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36919-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36919-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nengneng Luo & Kai Han & Matthew J. Cabral & Xiaozhou Liao & Shujun Zhang & Changzhong Liao & Guangzu Zhang & Xiyong Chen & Qin Feng & Jing-Feng Li & Yuezhou Wei, 2020. "Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Nengneng Luo & Li Ma & Gengguang Luo & Chao Xu & Lixiang Rao & Zhengu Chen & Zhenyong Cen & Qin Feng & Xiyong Chen & Fujita Toyohisa & Ye Zhu & Jiawang Hong & Jing-Feng Li & Shujun Zhang, 2023. "Well-defined double hysteresis loop in NaNbO3 antiferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mao-Hua Zhang & Hui Ding & Sonja Egert & Changhao Zhao & Lorenzo Villa & Lovro Fulanović & Pedro B. Groszewicz & Gerd Buntkowsky & Hans-Joachim Kleebe & Karsten Albe & Andreas Klein & Jurij Koruza, 2023. "Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36919-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.