IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52934-x.html
   My bibliography  Save this article

Ferroelectric tungsten bronze-based ceramics with high-energy storage performance via weakly coupled relaxor design and grain boundary optimization

Author

Listed:
  • Jiaming Liu

    (Beijing University of Posts and Telecommunications)

  • Ying Jiang

    (Tsinghua University)

  • Weichen Zhang

    (Tsinghua University)

  • Xu Cheng

    (Tsinghua University)

  • Peiyao Zhao

    (Tsinghua University)

  • Yichao Zhen

    (Tsinghua University)

  • Yanan Hao

    (Beijing University of Posts and Telecommunications)

  • Limin Guo

    (Beijing University of Posts and Telecommunications)

  • Ke Bi

    (Beijing University of Posts and Telecommunications)

  • Xiaohui Wang

    (Tsinghua University)

Abstract

A multiscale regulation strategy has been demonstrated for synthetic energy storage enhancement in a tetragonal tungsten bronze structure ferroelectric. Grain refining and second-phase precipitation (perovskite phase) are introduced in the BaSrTiNb2-xTaxO9 ceramics by regulating the composition and sintering process. Disordered polarization and distribution, chemical inhomogeneity, and insulating boundary layers are achieved to provide the fundamental structural origin of the relaxation characteristic, high breakdown strength, and superior energy storage performance. Thus, an ultrahigh energy storage density of 12.2 J cm−3 with an low energy consumption was achieved at an electric field of 950 kV cm−1. This is the highest known energy storage performance in tetragonal tungsten bronze-based ferroelectric. Notably, this ceramic shows remarkable stability over frequency, temperature, and cycling electric fields. This work brings new material candidates and structure design for developing of energy storage capacitors apart from the predominant perovskite ferroelectric ceramics.

Suggested Citation

  • Jiaming Liu & Ying Jiang & Weichen Zhang & Xu Cheng & Peiyao Zhao & Yichao Zhen & Yanan Hao & Limin Guo & Ke Bi & Xiaohui Wang, 2024. "Ferroelectric tungsten bronze-based ceramics with high-energy storage performance via weakly coupled relaxor design and grain boundary optimization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52934-x
    DOI: 10.1038/s41467-024-52934-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52934-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52934-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bin Xu & Jorge Íñiguez & L. Bellaiche, 2017. "Designing lead-free antiferroelectrics for energy storage," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Wei Luo & Alireza Akbarzadeh & Yousra Nahas & Sergei Prokhorenko & Laurent Bellaiche, 2023. "Quantum criticality at cryogenic melting of polar bubble lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Peng Chen & Charles Paillard & Hong Jian Zhao & Jorge Íñiguez & Laurent Bellaiche, 2022. "Deterministic control of ferroelectric polarization by ultrafast laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Antu Laha & Suguru Yoshida & Francisco Marques dos Santos Vieira & Hemian Yi & Seng Huat Lee & Sai Venkata Gayathri Ayyagari & Yingdong Guan & Lujin Min & Jose Gonzalez Jimenez & Leixin Miao & David G, 2024. "High-entropy engineering of the crystal and electronic structures in a Dirac material," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Mao-Hua Zhang & Hui Ding & Sonja Egert & Changhao Zhao & Lorenzo Villa & Lovro Fulanović & Pedro B. Groszewicz & Gerd Buntkowsky & Hans-Joachim Kleebe & Karsten Albe & Andreas Klein & Jurij Koruza, 2023. "Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Mengjiao Han & Cong Wang & Kangdi Niu & Qishuo Yang & Chuanshou Wang & Xi Zhang & Junfeng Dai & Yujia Wang & Xiuliang Ma & Junling Wang & Lixing Kang & Wei Ji & Junhao Lin, 2022. "Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52934-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.