IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51058-6.html
   My bibliography  Save this article

High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage

Author

Listed:
  • Jianhong Duan

    (Hunan University)

  • Kun Wei

    (Hunan University)

  • Qianbiao Du

    (Hunan University)

  • Linzhao Ma

    (Hunan University)

  • Huifen Yu

    (University of Science and Technology Beijing)

  • He Qi

    (University of Science and Technology Beijing)

  • Yangchun Tan

    (Chinese Academy of Sciences)

  • Gaokuo Zhong

    (Chinese Academy of Sciences)

  • Hao Li

    (Hunan University)

Abstract

Superparaelectrics are considered promising candidate materials for achieving superior energy storage capabilities. However, due to the complicated local structural design, simultaneously achieving high recoverable energy density (Wrec) and energy storage efficiency (η) under high electric fields remains a challenge in bulk superparaelectrics. Here, we propose utilizing entropy engineering to disrupt long-range ferroic orders into local polymorphic distortion disorder with multiple BO6 tilt types and diverse heterogeneous polarization configurations. This strategy reduces the switching barriers, thereby facilitating the emergence of superparaelectric behaviors with ideal polarization forms. Furthermore, it enables high polarization response, negligible remnant polarization, delayed polarization saturation, and enhanced breakdown electric fields (Eb) in high-entropy superparaelectrics. Consequently, an extraordinary Wrec of 15.48 J cm–3 and an ultrahigh η of 90.02% are achieved at a high Eb of 710 kV cm–1, surpassing the comprehensive energy storage performance of previously reported bulk superparaelectrics. This work demonstrates that entropy engineering is a viable strategy for designing high-performance superparaelectrics.

Suggested Citation

  • Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51058-6
    DOI: 10.1038/s41467-024-51058-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51058-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51058-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingbing Yang & Qinghua Zhang & Houbing Huang & Hao Pan & Wenxuan Zhu & Fanqi Meng & Shun Lan & Yiqian Liu & Bin Wei & Yiqun Liu & Letao Yang & Lin Gu & Long-Qing Chen & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Engineering relaxors by entropy for high energy storage performance," Nature Energy, Nature, vol. 8(9), pages 956-964, September.
    2. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Nengneng Luo & Kai Han & Matthew J. Cabral & Xiaozhou Liao & Shujun Zhang & Changzhong Liao & Guangzu Zhang & Xiyong Chen & Qin Feng & Jing-Feng Li & Yuezhou Wei, 2020. "Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Jie Chen & Yao Zhou & Xingyi Huang & Chunyang Yu & Donglin Han & Ao Wang & Yingke Zhu & Kunming Shi & Qi Kang & Pengli Li & Pingkai Jiang & Xiaoshi Qian & Hua Bao & Shengtao Li & Guangning Wu & Xinyua, 2023. "Ladderphane copolymers for high-temperature capacitive energy storage," Nature, Nature, vol. 615(7950), pages 62-66, March.
    5. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xinhui Li & Bo Liu & Jian Wang & Shuxuan Li & Xin Zhen & Jiapeng Zhi & Junjie Zou & Bei Li & Zhonghui Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2024. "High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Rishi Gurnani & Stuti Shukla & Deepak Kamal & Chao Wu & Jing Hao & Christopher Kuenneth & Pritish Aklujkar & Ashish Khomane & Robert Daniels & Ajinkya A. Deshmukh & Yang Cao & Gregory Sotzing & Rampi , 2024. "AI-assisted discovery of high-temperature dielectrics for energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    9. Nengneng Luo & Li Ma & Gengguang Luo & Chao Xu & Lixiang Rao & Zhengu Chen & Zhenyong Cen & Qin Feng & Xiyong Chen & Fujita Toyohisa & Ye Zhu & Jiawang Hong & Jing-Feng Li & Shujun Zhang, 2023. "Well-defined double hysteresis loop in NaNbO3 antiferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Rui Lu & Jian Wang & Tingzhi Duan & Tian-Yi Hu & Guangliang Hu & Yupeng Liu & Weijie Fu & Qiuyang Han & Yiqin Lu & Lu Lu & Shao-Dong Cheng & Yanzhu Dai & Dengwei Hu & Zhonghui Shen & Chun-Lin Jia & Ch, 2024. "Metadielectrics for high-temperature energy storage capacitors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Antu Laha & Suguru Yoshida & Francisco Marques dos Santos Vieira & Hemian Yi & Seng Huat Lee & Sai Venkata Gayathri Ayyagari & Yingdong Guan & Lujin Min & Jose Gonzalez Jimenez & Leixin Miao & David G, 2024. "High-entropy engineering of the crystal and electronic structures in a Dirac material," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Li-Feng Zhu & Shiqing Deng & Lei Zhao & Gen Li & Qi Wang & Linhai Li & Yongke Yan & He Qi & Bo-Ping Zhang & Jun Chen & Jing-Feng Li, 2023. "Heterovalent-doping-enabled atom-displacement fluctuation leads to ultrahigh energy-storage density in AgNbO3-based multilayer capacitors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Mao-Hua Zhang & Hui Ding & Sonja Egert & Changhao Zhao & Lorenzo Villa & Lovro Fulanović & Pedro B. Groszewicz & Gerd Buntkowsky & Hans-Joachim Kleebe & Karsten Albe & Andreas Klein & Jurij Koruza, 2023. "Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Wei Li & Zhong-Hui Shen & Run-Lin Liu & Xiao-Xiao Chen & Meng-Fan Guo & Jin-Ming Guo & Hua Hao & Yang Shen & Han-Xing Liu & Long-Qing Chen & Ce-Wen Nan, 2024. "Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51058-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.