IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56074-8.html
   My bibliography  Save this article

Ultrahigh piezoelectric performances of (K,Na)NbO3 based ceramics enabled by structural flexibility and grain orientation

Author

Listed:
  • Li-Feng Zhu

    (University of Science and Technology Beijing)

  • Dong Liu

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Xiaoming Shi

    (University of Science and Technology Beijing)

  • Shiqing Deng

    (University of Science and Technology Beijing)

  • Jiecheng Liu

    (University of Science and Technology Beijing)

  • Li-Yu Wei

    (Tsinghua University)

  • Zi-Qi Yang

    (Tsinghua University)

  • Qi Wang

    (University of Science and Technology Beijing)

  • Bo-Ping Zhang

    (University of Science and Technology Beijing)

  • Houbing Huang

    (Beijing Institute of Technology)

  • Shujun Zhang

    (University of Wollongong)

  • Jing-Feng Li

    (Tsinghua University)

Abstract

(K,Na)NbO3-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d33 ∼ 807 pC·N−1, along with a high longitudinal electromechanical coupling factor (k33 ∼ 88%) and Curie temperature (Tc ∼ 245 °C) in the (K,Na)(Nb1-xSbx)O3-Bi0.5Na0.5ZrO3-BiFeO3 (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K+/Na+ ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration. As a result of its excellent comprehensive piezoelectric properties, the textured KNN-5Sb/epoxy 1-3 piezoelectric composite is found to possess a broader bandwidth BW = 60% and higher amplitude output voltage than commercial PZT-5 and other KNN counterparts. These findings suggest that the textured KNN-5Sb ceramics could potentially replace current lead-based piezoceramics in transducer applications.

Suggested Citation

  • Li-Feng Zhu & Dong Liu & Xiaoming Shi & Shiqing Deng & Jiecheng Liu & Li-Yu Wei & Zi-Qi Yang & Qi Wang & Bo-Ping Zhang & Houbing Huang & Shujun Zhang & Jing-Feng Li, 2025. "Ultrahigh piezoelectric performances of (K,Na)NbO3 based ceramics enabled by structural flexibility and grain orientation," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56074-8
    DOI: 10.1038/s41467-025-56074-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56074-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56074-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    2. Xiaoyi Gao & Zhenxiang Cheng & Zibin Chen & Yao Liu & Xiangyu Meng & Xu Zhang & Jianli Wang & Qinghu Guo & Bei Li & Huajun Sun & Qinfen Gu & Hua Hao & Qiang Shen & Jinsong Wu & Xiaozhou Liao & Simon P, 2021. "The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhao & Feng Yang & Han Jiang & Guandao Gao, 2024. "Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    3. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Ruian Zhang & Chen Lin & Hongliang Dong & Haojie Han & Yu Song & Yiran Sun & Yue Wang & Zijun Zhang & Xiaohe Miao & Yongjun Wu & Zhe Ren & Qiaoshi Zeng & Houbing Huang & Jing Ma & He Tian & Zhaohui Re, 2025. "Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Jiasheng Liang & Jin Liu & Pengfei Qiu & Chen Ming & Zhengyang Zhou & Zhiqiang Gao & Kunpeng Zhao & Lidong Chen & Xun Shi, 2023. "Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Bo Wu & Lin Zhao & Jiaqing Feng & Yiting Zhang & Xilong Song & Jian Ma & Hong Tao & Ze Xu & Yi-Xuan Liu & Shidong Wang & Jingtong Lu & Fangyuan Zhu & Bing Han & Ke Wang, 2024. "Contribution of irreversible non-180° domain to performance for multiphase coexisted potassium sodium niobate ceramics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jie Yin & Xiaoming Shi & Hong Tao & Zhi Tan & Xiang Lv & Xiangdong Ding & Jun Sun & Yang Zhang & Xingmin Zhang & Kui Yao & Jianguo Zhu & Houbing Huang & Haijun Wu & Shujun Zhang & Jiagang Wu, 2022. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56074-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.