IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p705-d1331429.html
   My bibliography  Save this article

Rapid Breakdown Time in Positive Impulse Voltages through Spectroscopy Analysis

Author

Listed:
  • Muhammad Ikhwanus

    (Graduate School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
    Electrical Department, Malikussaleh University, Lhokseumawe 24351, Indonesia)

  • Takeshi Morimoto

    (Graduate School of Science and Engineering, Kindai University, Osaka 577-8502, Japan)

Abstract

The air discharge phenomenon, characterized by its rapid and transient nature, is inherently unpredictable, emphasizing the need for a comprehensive understanding of its physical interactions. Our experimental setup involved voltage generators producing both positive and negative impulse voltages (±100 kV, ±125 kV, and ±150 kV) at a 3.5 cm gap distance in a needle-to-plane geometry. This setup facilitated the study of individual spectral lines of impulse voltage discharges, with a specific emphasis on examining oxygen transitions through spectroscopy analysis. To explore the influence of photon emission on the breakdown rate, we examined the correlation between decay time, excitation temperature, and peak intensity during the transition from an upper state to a lower state. Our findings reveal that positive impulse voltage discharges more rapidly than negative impulse voltages. This heightened discharge rate is attributed to the higher peak intensities of O II at 313.421 and 241.162 nm, as well as O IV at 337.806 nm, observed in the excited state, as opposed to O I at 777.417 nm in the combination state. The inference drawn from the larger peak intensity suggests that energetic photon emission plays a pivotal role in initiating and expediting electron discharge in positive voltages.

Suggested Citation

  • Muhammad Ikhwanus & Takeshi Morimoto, 2024. "Rapid Breakdown Time in Positive Impulse Voltages through Spectroscopy Analysis," Energies, MDPI, vol. 17(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:705-:d:1331429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacqueline Bloch & Andrea Cavalleri & Victor Galitski & Mohammad Hafezi & Angel Rubio, 2022. "Strongly correlated electron–photon systems," Nature, Nature, vol. 606(7912), pages 41-48, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Masanori Sakamoto & Masaki Hada & Wataru Ota & Fumihiko Uesugi & Tohru Sato, 2023. "Localised surface plasmon resonance inducing cooperative Jahn–Teller effect for crystal phase-change in a nanocrystal," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Christian J. Eckhardt & Sambuddha Chattopadhyay & Dante M. Kennes & Eugene A. Demler & Michael A. Sentef & Marios H. Michael, 2024. "Theory of resonantly enhanced photo-induced superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Changhua Bao & Michael Schüler & Teng Xiao & Fei Wang & Haoyuan Zhong & Tianyun Lin & Xuanxi Cai & Tianshuang Sheng & Xiao Tang & Hongyun Zhang & Pu Yu & Zhiyuan Sun & Wenhui Duan & Shuyun Zhou, 2024. "Manipulating the symmetry of photon-dressed electronic states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:705-:d:1331429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.