IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49610-5.html
   My bibliography  Save this article

Acceleration-induced spectral beats in strongly driven harmonic oscillators

Author

Listed:
  • A. S. Kuznetsov

    (Leibniz-Institut im Forschungsverbund Berlin e. V.)

  • K. Biermann

    (Leibniz-Institut im Forschungsverbund Berlin e. V.)

  • P. V. Santos

    (Leibniz-Institut im Forschungsverbund Berlin e. V.)

Abstract

The harmonic modulation of coherent systems gives rise to a wealth of physical phenomena, e.g., the AC-Stark effect and Mollow triplets, with important implications for coherent control and frequency conversion. Here, we demonstrate a novel regime of temporal coherence in oscillators harmonically driven at extreme energy modulation amplitudes relative to the modulation quantum. The studies were carried out by modulating a confined exciton-polariton Bose-Einstein condensate (BEC) by an acoustic wave. Features of the new regime are the appearance, in the spectral domain, of a comb of resonances termed acceleration beats with energy spacing tunable by the modulation amplitude and, in the time domain, of temporal correlations at time scales much shorter than the acoustic period, which also depend on the modulation amplitude. These features are quantitatively accounted for by a theoretical framework, which associates the beats with accelerated energy-change rates during the harmonic cycle. These observations are underpinned by the high sensitivity of the BEC energy to the acoustic driving, which simultaneously preserves the BEC’s temporal coherence. The acceleration beats are a general feature associated with accelerated energy changes: analogous features are thus also expected to appear under highly accelerated motion e.g., in connection with Cherenkov and Hawking radiation.

Suggested Citation

  • A. S. Kuznetsov & K. Biermann & P. V. Santos, 2024. "Acceleration-induced spectral beats in strongly driven harmonic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49610-5
    DOI: 10.1038/s41467-024-49610-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49610-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49610-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Pigeau & S. Rohr & L. Mercier de Lépinay & A. Gloppe & V. Jacques & O. Arcizet, 2015. "Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. D. L. Chafatinos & A. S. Kuznetsov & S. Anguiano & A. E. Bruchhausen & A. A. Reynoso & K. Biermann & P. V. Santos & A. Fainstein, 2020. "Polariton-driven phonon laser," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Alexander Sergeevich Kuznetsov & Klaus Biermann & Andres Alejandro Reynoso & Alejandro Fainstein & Paulo Ventura Santos, 2023. "Microcavity phonoritons – a coherent optical-to-microwave interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. B. Zaks & R. B. Liu & M. S. Sherwin, 2012. "Experimental observation of electron–hole recollisions," Nature, Nature, vol. 483(7391), pages 580-583, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soonyoung Cha & Minjeong Kim & Youngjae Kim & Shinyoung Choi & Sejong Kang & Hoon Kim & Sangho Yoon & Gunho Moon & Taeho Kim & Ye Won Lee & Gil Young Cho & Moon Jeong Park & Cheol-Joo Kim & B. J. Kim , 2022. "Gate-tunable quantum pathways of high harmonic generation in graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Alexander Sergeevich Kuznetsov & Klaus Biermann & Andres Alejandro Reynoso & Alejandro Fainstein & Paulo Ventura Santos, 2023. "Microcavity phonoritons – a coherent optical-to-microwave interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49610-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.