IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55619-7.html
   My bibliography  Save this article

Towards non-blinking and photostable perovskite quantum dots

Author

Listed:
  • Chenjia Mi

    (The University of Oklahoma)

  • Gavin C. Gee

    (The University of Oklahoma)

  • Chance W. Lander

    (The University of Oklahoma)

  • Donghoon Shin

    (Northwestern University)

  • Matthew L. Atteberry

    (The University of Oklahoma)

  • Novruz G. Akhmedov

    (The University of Oklahoma)

  • Lamia Hidayatova

    (The University of Oklahoma)

  • Jesse D. DiCenso

    (The University of Oklahoma)

  • Wai Tak Yip

    (The University of Oklahoma)

  • Bin Chen

    (Northwestern University)

  • Yihan Shao

    (The University of Oklahoma)

  • Yitong Dong

    (The University of Oklahoma
    The University of Oklahoma)

Abstract

Surface defect-induced photoluminescence blinking and photodarkening are ubiquitous in lead halide perovskite quantum dots. Despite efforts to stabilize the surface by chemically engineering ligand binding moieties, blinking accompanied by photodegradation still poses barriers to implementing perovskite quantum dots in quantum emitters. To date, ligand tail engineering in the solid state has rarely been explored for perovskite quantum dots. We posit that attractive intermolecular interactions between low-steric ligand tails, such as π-π stacking, can promote the formation of a nearly epitaxial ligand layer that significantly reduces the quantum dot surface energy. Here, we show that single CsPbBr3 quantum dots covered by stacked phenethylammonium ligands exhibit nearly non-blinking single photon emission with high purity (~ 98%) and extraordinary photostability (12 hours continuous operation and saturated excitations), allowing the determination of size-dependent exciton radiative rates and emission line widths of CsPbBr3 quantum dots at the single particle level.

Suggested Citation

  • Chenjia Mi & Gavin C. Gee & Chance W. Lander & Donghoon Shin & Matthew L. Atteberry & Novruz G. Akhmedov & Lamia Hidayatova & Jesse D. DiCenso & Wai Tak Yip & Bin Chen & Yihan Shao & Yitong Dong, 2025. "Towards non-blinking and photostable perovskite quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55619-7
    DOI: 10.1038/s41467-024-55619-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55619-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55619-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ming Fu & Philippe Tamarat & Jean-Baptiste Trebbia & Maryna I. Bodnarchuk & Maksym V. Kovalenko & Jacky Even & Brahim Lounis, 2018. "Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Viktoriia Morad & Andriy Stelmakh & Mariia Svyrydenko & Leon G. Feld & Simon C. Boehme & Marcel Aebli & Joel Affolter & Christoph J. Kaul & Nadine J. Schrenker & Sara Bals & Yesim Sahin & Dmitry N. Di, 2024. "Designer phospholipid capping ligands for soft metal halide nanocrystals," Nature, Nature, vol. 626(7999), pages 542-548, February.
    3. Chenglian Zhu & Simon C. Boehme & Leon G. Feld & Anastasiia Moskalenko & Dmitry N. Dirin & Rainer F. Mahrt & Thilo Stöferle & Maryna I. Bodnarchuk & Alexander L. Efros & Peter C. Sercel & Maksym V. Ko, 2024. "Single-photon superradiance in individual caesium lead halide quantum dots," Nature, Nature, vol. 626(7999), pages 535-541, February.
    4. Weijian Tao & Chi Zhang & Qiaohui Zhou & Yida Zhao & Haiming Zhu, 2021. "Momentarily trapped exciton polaron in two-dimensional lead halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yuanzhi Jiang & Changjiu Sun & Jian Xu & Saisai Li & Minghuan Cui & Xinliang Fu & Yuan Liu & Yaqi Liu & Haoyue Wan & Keyu Wei & Tong Zhou & Wei Zhang & Yingguo Yang & Jien Yang & Chaochao Qin & Shuyan, 2022. "Synthesis-on-substrate of quantum dot solids," Nature, Nature, vol. 612(7941), pages 679-684, December.
    6. Alexander D. Taylor & Qing Sun & Katelyn P. Goetz & Qingzhi An & Tim Schramm & Yvonne Hofstetter & Maximillian Litterst & Fabian Paulus & Yana Vaynzof, 2021. "A general approach to high-efficiency perovskite solar cells by any antisolvent," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Michael A. Becker & Roman Vaxenburg & Georgian Nedelcu & Peter C. Sercel & Andrew Shabaev & Michael J. Mehl & John G. Michopoulos & Samuel G. Lambrakos & Noam Bernstein & John L. Lyons & Thilo Stöferl, 2018. "Bright triplet excitons in caesium lead halide perovskites," Nature, Nature, vol. 553(7687), pages 189-193, January.
    8. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Rui Cai & Indrajit Wadgaonkar & Jia Wei Melvin Lim & Stefano Dal Forno & David Giovanni & Minjun Feng & Senyun Ye & Marco Battiato & Tze Chien Sum, 2023. "Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    10. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    13. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    14. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Mengwei Zhou & Ping Huang & Xiaoying Shang & Ruihuan Zhang & Wen Zhang & Zhiqing Shao & Shuo Zhang & Wei Zheng & Xueyuan Chen, 2024. "Ultrafast upconversion superfluorescence with a sub-2.5 ns lifetime at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
    17. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55619-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.