IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i4p760-768.html
   My bibliography  Save this article

Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels

Author

Listed:
  • Jiang, Min
  • Li, Hui
  • Zhang, Zeng-ke
  • Zeng, Jia

Abstract

We present an approach to faithfully teleport an unknown quantum state of entangled particles in a multi-particle system involving multi spatially remote agents via probabilistic channels. In our scheme, the integrity of an entangled multi-particle state can be maintained even when the construction of a faithful channel fails. Furthermore, in a quantum teleportation network, there are generally multi spatially remote agents which play the role of relay nodes between a sender and a distant receiver. Hence, we propose two schemes for directly and indirectly constructing a faithful channel between the sender and the distant receiver with the assistance of relay agents, respectively. Our results show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.

Suggested Citation

  • Jiang, Min & Li, Hui & Zhang, Zeng-ke & Zeng, Jia, 2011. "Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 760-768.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:760-768
    DOI: 10.1016/j.physa.2010.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110008782
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Zhuo-Liang & Zhao, Yan & Yang, Ming, 2006. "Probabilistic teleportation of unknown atomic states using non-maximally entangled states without Bell-state measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 17-20.
    2. Cao, Zhuo-Liang & Yang, Ming, 2004. "Probabilistic teleportation of unknown atomic state using W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 132-140.
    3. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    4. Cao, Zhuo-Liang & Song, Wei, 2005. "Teleportation of a two-particle entangled state via W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 177-183.
    5. Jiang, Min & Zhang, Zeng-ke & Dong, Dao-yi & Liu, Bin & Tarn, Tzyh-Jong, 2009. "The improved quantum switching mechanism based on contention," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1936-1942.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    5. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    8. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
    9. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
    11. Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Yang, Ming & Song, Wei & Cao, Zhuo-Liang, 2004. "Entanglement distillation for atomic states via cavity QED," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 251-261.
    13. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
    16. Bao, Daipengwei & Liu, Min & Ou, Yangwei & Xu, Qingshan & Li, Qin & Tan, Xiaoqing, 2024. "Eigenvalue-based quantum state verification of three-qubit W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    17. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Motamedifar, M., 2017. "Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 280-292.
    19. Yang, Ming & Cao, Zhuo-Liang, 2004. "Entanglement distillation for W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 141-148.
    20. Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2021. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)," CREMA Working Paper Series 2021-14, Center for Research in Economics, Management and the Arts (CREMA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:4:p:760-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.