IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50355-4.html
   My bibliography  Save this article

An integrated atom array-nanophotonic chip platform with background-free imaging

Author

Listed:
  • Shankar G. Menon

    (University of Chicago)

  • Noah Glachman

    (University of Chicago)

  • Matteo Pompili

    (University of Chicago)

  • Alan Dibos

    (Center for Nanoscale Materials
    Argonne National Laboratory
    Center for Molecular Engineering)

  • Hannes Bernien

    (University of Chicago)

Abstract

Arrays of neutral atoms trapped in optical tweezers have emerged as a leading platform for quantum information processing and quantum simulation due to their scalability, reconfigurable connectivity, and high-fidelity operations. Individual atoms are promising candidates for quantum networking due to their capability to emit indistinguishable photons that are entangled with their internal atomic states. Integrating atom arrays with photonic interfaces would enable distributed architectures in which nodes hosting many processing qubits could be efficiently linked together via the distribution of remote entanglement. However, many atom array techniques cease to work in close proximity to photonic interfaces, with atom detection via standard fluorescence imaging presenting a major challenge due to scattering from nearby photonic devices. Here, we demonstrate an architecture that combines atom arrays with up to 64 optical tweezers and a millimeter-scale photonic chip hosting more than 100 nanophotonic cavities. We achieve high-fidelity ( ~ 99.2%), background-free imaging in close proximity to nanofabricated cavities using a multichromatic excitation and detection scheme. The atoms can be imaged while trapped a few hundred nanometers above the dielectric surface, which we verify using Stark shift measurements of the modified trapping potential. Finally, we rearrange atoms into defect-free arrays and load them simultaneously onto the same or multiple devices.

Suggested Citation

  • Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50355-4
    DOI: 10.1038/s41467-024-50355-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50355-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50355-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dolev Bluvstein & Harry Levine & Giulia Semeghini & Tout T. Wang & Sepehr Ebadi & Marcin Kalinowski & Alexander Keesling & Nishad Maskara & Hannes Pichler & Markus Greiner & Vladan Vuletić & Mikhail D, 2022. "A quantum processor based on coherent transport of entangled atom arrays," Nature, Nature, vol. 604(7906), pages 451-456, April.
    2. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    3. T. M. Graham & Y. Song & J. Scott & C. Poole & L. Phuttitarn & K. Jooya & P. Eichler & X. Jiang & A. Marra & B. Grinkemeyer & M. Kwon & M. Ebert & J. Cherek & M. T. Lichtman & M. Gillette & J. Gilbert, 2022. "Multi-qubit entanglement and algorithms on a neutral-atom quantum computer," Nature, Nature, vol. 604(7906), pages 457-462, April.
    4. Neil V. Corzo & Jérémy Raskop & Aveek Chandra & Alexandra S. Sheremet & Baptiste Gouraud & Julien Laurat, 2019. "Waveguide-coupled single collective excitation of atomic arrays," Nature, Nature, vol. 566(7744), pages 359-362, February.
    5. Philip Thomas & Leonardo Ruscio & Olivier Morin & Gerhard Rempe, 2022. "Efficient generation of entangled multiphoton graph states from a single atom," Nature, Nature, vol. 608(7924), pages 677-681, August.
    6. May E. Kim & Tzu-Han Chang & Brian M. Fields & Cheng-An Chen & Chen-Lung Hung, 2019. "Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. T. G. Tiecke & J. D. Thompson & N. P. de Leon & L. R. Liu & V. Vuletić & M. D. Lukin, 2014. "Nanophotonic quantum phase switch with a single atom," Nature, Nature, vol. 508(7495), pages 241-244, April.
    8. Pascal Scholl & Michael Schuler & Hannah J. Williams & Alexander A. Eberharter & Daniel Barredo & Kai-Niklas Schymik & Vincent Lienhard & Louis-Paul Henry & Thomas C. Lang & Thierry Lahaye & Andreas M, 2021. "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms," Nature, Nature, vol. 595(7866), pages 233-238, July.
    9. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luheng Zhao & Michael Dao Kang Lee & Mohammad Mujahid Aliyu & Huanqian Loh, 2023. "Floquet-tailored Rydberg interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yue Wu & Shimon Kolkowitz & Shruti Puri & Jeff D. Thompson, 2022. "Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zhiling Wang & Zenghui Bao & Yan Li & Yukai Wu & Weizhou Cai & Weiting Wang & Xiyue Han & Jiahui Wang & Yipu Song & Luyan Sun & Hongyi Zhang & Luming Duan, 2022. "An ultra-high gain single-photon transistor in the microwave regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Prataviera, G.A. & de Oliveira, M.C., 2015. "Susceptibility of a two-level atom near an isotropic photonic band edge: Transparency and band edge profile reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 34-40.
    8. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    10. Benedikt Fauseweh, 2024. "Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    14. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
    18. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    19. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    20. Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50355-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.