IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05876-0.html
   My bibliography  Save this article

Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons

Author

Listed:
  • Ming Fu

    (LP2N
    LP2N)

  • Philippe Tamarat

    (LP2N
    LP2N)

  • Jean-Baptiste Trebbia

    (LP2N
    LP2N)

  • Maryna I. Bodnarchuk

    (Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Maksym V. Kovalenko

    (Empa-Swiss Federal Laboratories for Materials Science and Technology
    ETH Zürich)

  • Jacky Even

    (Institut FOTON - UMR 6082)

  • Brahim Lounis

    (LP2N
    LP2N)

Abstract

Formamidinium lead iodide (FAPbI3) exhibits the narrowest bandgap energy among lead halide perovskites, thus playing a pivotal role for the development of photovoltaics and near-infrared classical or quantum light sources. Here, we unveil the fundamental properties of FAPbI3 by spectroscopic investigations of nanocrystals of this material at the single-particle level. We show that these nanocrystals deliver near-infrared single photons suitable for quantum communication. Moreover, the low temperature photoluminescence spectra of FAPbI3 nanocrystals reveal the optical phonon modes responsible for the emission line broadening with temperature and a vanishing exciton–acoustic phonon interaction in these soft materials. The photoluminescence decays are governed by thermal mixing between fine structure states, with a two-optical phonon Raman scattering process. These results point to a strong Frölich interaction and to a phonon glass character that weakens the interactions of charge carriers with acoustic phonons and thus impacts their relaxation and mobility in these perovskites.

Suggested Citation

  • Ming Fu & Philippe Tamarat & Jean-Baptiste Trebbia & Maryna I. Bodnarchuk & Maksym V. Kovalenko & Jacky Even & Brahim Lounis, 2018. "Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05876-0
    DOI: 10.1038/s41467-018-05876-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05876-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05876-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05876-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.