IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30016-0.html
   My bibliography  Save this article

Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots

Author

Listed:
  • Gabriele Rainò

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology)

  • Nuri Yazdani

    (ETH Zurich)

  • Simon C. Boehme

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology
    Vrije Universiteit Amsterdam)

  • Manuel Kober-Czerny

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology)

  • Chenglian Zhu

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology)

  • Franziska Krieg

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology)

  • Marta D. Rossell

    (Empa–Swiss Federal Laboratories for Materials Science and Technology)

  • Rolf Erni

    (Empa–Swiss Federal Laboratories for Materials Science and Technology)

  • Vanessa Wood

    (ETH Zurich)

  • Ivan Infante

    (Vrije Universiteit Amsterdam
    Istituto Italiano di Tecnologia)

  • Maksym V. Kovalenko

    (ETH Zurich
    Empa−Swiss Federal Laboratories for Materials Science and Technology)

Abstract

Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr3 quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35−65 meV (vs. initial values of 70–120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20−60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.

Suggested Citation

  • Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30016-0
    DOI: 10.1038/s41467-022-30016-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30016-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30016-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deniz Bozyigit & Nuri Yazdani & Maksym Yarema & Olesya Yarema & Weyde Matteo Mario Lin & Sebastian Volk & Kantawong Vuttivorakulchai & Mathieu Luisier & Fanni Juranyi & Vanessa Wood, 2016. "Soft surfaces of nanomaterials enable strong phonon interactions," Nature, Nature, vol. 531(7596), pages 618-622, March.
    2. Fengjia Fan & Oleksandr Voznyy & Randy P. Sabatini & Kristopher T. Bicanic & Michael M. Adachi & James R. McBride & Kemar R. Reid & Young-Shin Park & Xiyan Li & Ankit Jain & Rafael Quintero-Bermudez &, 2017. "Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy," Nature, Nature, vol. 544(7648), pages 75-79, April.
    3. Petr Siyushev & Guilherme Stein & Jörg Wrachtrup & Ilja Gerhardt, 2014. "Molecular photons interfaced with alkali atoms," Nature, Nature, vol. 509(7498), pages 66-70, May.
    4. Michael A. Becker & Roman Vaxenburg & Georgian Nedelcu & Peter C. Sercel & Andrew Shabaev & Michael J. Mehl & John G. Michopoulos & Samuel G. Lambrakos & Noam Bernstein & John L. Lyons & Thilo Stöferl, 2018. "Bright triplet excitons in caesium lead halide perovskites," Nature, Nature, vol. 553(7687), pages 189-193, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayeon Baek & Sungsu Kang & Junyoung Heo & Soonmi Choi & Ran Kim & Kihyun Kim & Nari Ahn & Yeo-Geon Yoon & Taekjoon Lee & Jae Bok Chang & Kyung Sig Lee & Young-Gil Park & Jungwon Park, 2024. "Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. E. Kirstein & N. E. Kopteva & D. R. Yakovlev & E. A. Zhukov & E. V. Kolobkova & M. S. Kuznetsova & V. V. Belykh & I. A. Yugova & M. M. Glazov & M. Bayer & A. Greilich, 2023. "Mode locking of hole spin coherences in CsPb(Cl, Br)3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Heeyoung Jung & Young-Shin Park & Namyoung Ahn & Jaehoon Lim & Igor Fedin & Clément Livache & Victor I. Klimov, 2022. "Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Rui Cai & Indrajit Wadgaonkar & Jia Wei Melvin Lim & Stefano Dal Forno & David Giovanni & Minjun Feng & Senyun Ye & Marco Battiato & Tze Chien Sum, 2023. "Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Yuxuan Li & Yaoyao Han & Wenfei Liang & Boyu Zhang & Yulu Li & Yuan Liu & Yupeng Yang & Kaifeng Wu & Jingyi Zhu, 2022. "Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30016-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.