IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26456-9.html
   My bibliography  Save this article

Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria

Author

Listed:
  • Yanping Long

    (Sichuan University)

  • Ling Li

    (Sichuan University
    Affiliated Hospital of North Sichuan Medical College)

  • Tao Xu

    (Sichuan University)

  • Xizheng Wu

    (Sichuan University)

  • Yun Gao

    (Sichuan University)

  • Jianbo Huang

    (Sichuan University)

  • Chao He

    (Sichuan University)

  • Tian Ma

    (Sichuan University)

  • Lang Ma

    (Sichuan University)

  • Chong Cheng

    (Sichuan University)

  • Changsheng Zhao

    (Sichuan University
    Sichuan University
    Sichuan University)

Abstract

Pathogenic drug-resistant bacteria represent a threat to human health, for instance, the methicillin-resistant Staphylococcus aureus (MRSA). There is an ever-growing need to develop non-antibiotic strategies to fight bacteria without triggering drug resistance. Here, we design a hedgehog artificial macrophage with atomic-catalytic centers to combat MRSA by mimicking the “capture and killing” process of macrophages. The experimental studies and theoretical calculations reveal that the synthesized materials can efficiently capture and kill MRSA by the hedgehog topography and substantial generation of •O2− and HClO with its Fe2N6O catalytic centers. The synthesized artificial macrophage exhibits a low minimal inhibition concentration (8 μg/mL Fe-Art M with H2O2 (100 μM)) to combat MRSA and rapidly promote the healing of bacteria-infected wounds on rabbit skin. We suggest that the application of this hedgehog artificial macrophage with “capture and killing” capability and high ROS-catalytic activity will open up a promising pathway to develop antibacterial materials for bionic and non-antibiotic disinfection strategies.

Suggested Citation

  • Yanping Long & Ling Li & Tao Xu & Xizheng Wu & Yun Gao & Jianbo Huang & Chao He & Tian Ma & Lang Ma & Chong Cheng & Changsheng Zhao, 2021. "Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26456-9
    DOI: 10.1038/s41467-021-26456-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26456-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26456-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyu Wang & Xuejiao J. Gao & Li Qin & Changda Wang & Li Song & Yong-Ning Zhou & Guoyin Zhu & Wen Cao & Shichao Lin & Liqi Zhou & Kang Wang & Huigang Zhang & Zhong Jin & Peng Wang & Xingfa Gao & Hui , 2019. "eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Shubo Tian & Qiang Fu & Wenxing Chen & Quanchen Feng & Zheng Chen & Jian Zhang & Weng-Chon Cheong & Rong Yu & Lin Gu & Juncai Dong & Jun Luo & Chen Chen & Qing Peng & Claudia Draxl & Dingsheng Wang & , 2018. "Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Zhuobin Xu & Zhiyue Qiu & Qi Liu & Yixin Huang & Dandan Li & Xinggui Shen & Kelong Fan & Juqun Xi & Yunhao Gu & Yan Tang & Jing Jiang & Jialei Xu & Jinzhi He & Xingfa Gao & Yuan Liu & Hyun Koo & Xiyun, 2018. "Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangqin Meng & Huizhen Fan & Lei Chen & Jiuyang He & Chaoyi Hong & Jiaying Xie & Yinyin Hou & Kaidi Wang & Xingfa Gao & Lizeng Gao & Xiyun Yan & Kelong Fan, 2024. "Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yukun Zhao & Mengyu Duan & Chaoyuan Deng & Jie Yang & Sipeng Yang & Yuchao Zhang & Hua Sheng & Youji Li & Chuncheng Chen & Jincai Zhao, 2023. "Br−/BrO−-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26456-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.