IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27194-8.html
   My bibliography  Save this article

Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening

Author

Listed:
  • Zhenzhen Wang

    (National Center for Nanoscience and Technology of China)

  • Jiangjiexing Wu

    (Nanjing University)

  • Jia-Jia Zheng

    (National Center for Nanoscience and Technology of China)

  • Xiaomei Shen

    (Jiangxi Normal University)

  • Liang Yan

    (Chinese Academy of Sciences)

  • Hui Wei

    (Nanjing University)

  • Xingfa Gao

    (National Center for Nanoscience and Technology of China)

  • Yuliang Zhao

    (Chinese Academy of Sciences)

Abstract

The activity of nanomaterials (NMs) in catalytically scavenging superoxide anions mimics that of superoxide dismutase (SOD). Although dozens of NMs have been demonstrated to possess such activity, the underlying principles are unclear, hindering the discovery of NMs as the novel SOD mimics. In this work, we use density functional theory calculations to study the thermodynamics and kinetics of the catalytic processes, and we develop two principles, namely, an energy level principle and an adsorption energy principle, for the activity. The first principle quantitatively describes the role of the intermediate frontier molecular orbital in transferring electrons for catalysis. The second one quantitatively describes the competition between the desired catalytic reaction and undesired side reactions. The ability of the principles to predict the SOD-like activities of metal-organic frameworks were verified by experiments. Both principles can be easily implemented in computer programs to computationally screen NMs with the intrinsic SOD-like activity.

Suggested Citation

  • Zhenzhen Wang & Jiangjiexing Wu & Jia-Jia Zheng & Xiaomei Shen & Liang Yan & Hui Wei & Xingfa Gao & Yuliang Zhao, 2021. "Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27194-8
    DOI: 10.1038/s41467-021-27194-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27194-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27194-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Ma & Jia-Jia Zheng & Ning Zhou & Ruofei Zhang & Long Fang & Yili Yang & Xingfa Gao & Chunying Chen & Xiyun Yan & Kelong Fan, 2024. "A natural biogenic nanozyme for scavenging superoxide radicals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27194-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.